Spaces:
Running
Running
File size: 6,755 Bytes
020f369 18cbfe7 020f369 18cbfe7 020f369 140be5e 1fe249a 2e5c86d 558b4d7 1485b15 2e5c86d 020f369 49cde4e 18cbfe7 558b4d7 a133fcb 558b4d7 1485b15 020f369 49cde4e 5f78296 2e5c86d 020f369 49cde4e 558b4d7 49cde4e 020f369 49cde4e 020f369 558b4d7 020f369 558b4d7 e517f23 1485b15 7e92d80 189176d 7e92d80 189176d 7e92d80 189176d 558b4d7 189176d 7e92d80 189176d 020f369 558b4d7 49cde4e 020f369 189176d 7e92d80 189176d 020f369 189176d 18cbfe7 189176d 558b4d7 18cbfe7 189176d 18cbfe7 189176d 18cbfe7 189176d 18cbfe7 189176d 49cde4e 189176d 18cbfe7 49cde4e 189176d 49cde4e 189176d a133fcb 189176d 18cbfe7 189176d 18cbfe7 189176d 18cbfe7 189176d 7e92d80 189176d 1a72984 189176d a133fcb 189176d 18cbfe7 189176d 020f369 189176d 7e92d80 189176d 1a72984 7e92d80 189176d 2e5c86d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
from pathlib import Path
import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.graph_objects as go
import streamlit as st
from ase.data import chemical_symbols
from plotly.subplots import make_subplots
from scipy.interpolate import CubicSpline
from mlip_arena.models import REGISTRY
st.markdown(
"""
# Homonuclear Diatomics
Homonuclear diatomics are molecules composed of two atoms of the same element.
The potential energy curves of homonuclear diatomics are the most fundamental interactions between atoms in quantum chemistry.
"""
)
st.markdown("### Methods")
container = st.container(border=True)
valid_models = [
model
for model, metadata in REGISTRY.items()
if Path(__file__).stem in metadata.get("gpu-tasks", [])
]
mlip_methods = container.multiselect(
"MLIPs",
valid_models,
["EquiformerV2(OC22)", "CHGNet", "M3GNet", "SevenNet", "MACE-MP(M)", "ORB", "eqV2(OMat)"],
)
dft_methods = container.multiselect("DFT Methods", ["GPAW"], [])
st.markdown("### Settings")
vis = st.container(border=True)
energy_plot = vis.checkbox("Show energy curves", value=True)
force_plot = vis.checkbox("Show force curves", value=False)
ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=2)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
attr: getattr(pcolors.qualitative, attr)
for attr in all_attributes
if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)
palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())
palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
color_sequence = color_palettes[palette_name] # type: ignore
if not mlip_methods and not dft_methods:
st.stop()
@st.cache_data
def get_data(mlip_methods, dft_methods):
DATA_DIR = Path("mlip_arena/tasks/diatomics")
dfs = [
pd.read_json(
DATA_DIR / REGISTRY[method]["family"] / "homonuclear-diatomics.json"
)
for method in mlip_methods
]
dfs.extend(
[
pd.read_json(DATA_DIR / method.lower() / "homonuclear-diatomics.json")
for method in dft_methods
]
)
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["name", "method"])
return df
df = get_data(mlip_methods, dft_methods)
method_color_mapping = {
method: color_sequence[i % len(color_sequence)]
for i, method in enumerate(df["method"].unique())
}
@st.cache_data
def get_plots(df, energy_plot: bool, force_plot: bool, method_color_mapping: dict):
figs = []
for i, symbol in enumerate(chemical_symbols[1:]):
rows = df[df["name"] == symbol + symbol]
if rows.empty:
continue
fig = make_subplots(specs=[[{"secondary_y": True}]])
elo, flo = float("inf"), float("inf")
for j, method in enumerate(rows["method"].unique()):
if method not in mlip_methods and method not in dft_methods:
continue
row = rows[rows["method"] == method].iloc[0]
rs = np.array(row["R"])
es = np.array(row["E"])
fs = np.array(row["F"])
rs = np.array(rs)
ind = np.argsort(rs)
es = np.array(es)
fs = np.array(fs)
rs = rs[ind]
es = es[ind]
if "GPAW" not in method:
es = es - es[-1]
else:
pass
if "GPAW" not in method:
fs = fs[ind]
if "GPAW" in method:
xs = np.linspace(rs.min() * 0.99, rs.max() * 1.01, int(5e2))
else:
xs = rs
if energy_plot:
if "GPAW" in method:
cs = CubicSpline(rs, es)
ys = cs(xs)
else:
ys = es
elo = min(elo, max(ys.min() * 1.2, -15), -1)
# elo = min(elo, ys.min()*1.2, -1)
fig.add_trace(
go.Scatter(
x=xs,
y=ys,
mode="lines",
line=dict(
color=method_color_mapping[method],
width=3,
),
name=method,
),
secondary_y=False,
)
if force_plot and "GPAW" not in method:
ys = fs
flo = min(flo, max(ys.min() * 1.2, -50))
fig.add_trace(
go.Scatter(
x=xs,
y=ys,
mode="lines",
line=dict(
color=method_color_mapping[method],
width=2,
dash="dashdot",
),
name=method,
showlegend=not energy_plot,
),
secondary_y=True,
)
name = f"{symbol}-{symbol}"
fig.update_layout(
showlegend=True,
legend=dict(
orientation="v",
x=0.95,
xanchor="right",
y=1,
yanchor="top",
bgcolor="rgba(0, 0, 0, 0)",
# entrywidth=0.3,
# entrywidthmode='fraction',
),
title_text=f"{name}",
title_x=0.5,
)
# Set x-axis title
fig.update_xaxes(title_text="Distance [Å]")
# Set y-axes titles
if energy_plot:
fig.update_layout(
yaxis=dict(
title=dict(text="Energy [eV]"),
side="left",
range=[elo, 2.0 * (abs(elo))],
)
)
if force_plot:
fig.update_layout(
yaxis2=dict(
title=dict(text="Force [eV/Å]"),
side="right",
range=[flo, 1.0 * abs(flo)],
overlaying="y",
tickmode="sync",
),
)
# cols[i % ncols].plotly_chart(fig, use_container_width=True)
figs.append(fig)
return figs
# fig.write_image(format='svg', file=img_dir / f"{name}.svg")
figs = get_plots(df, energy_plot, force_plot, method_color_mapping)
for i, fig in enumerate(figs):
if i % ncols == 0:
cols = st.columns(ncols)
cols[i % ncols].plotly_chart(fig, use_container_width=True)
|