Spaces:
Running
Running
File size: 13,342 Bytes
2f7e23a 1effaf5 2f7e23a 1effaf5 2f7e23a 1effaf5 2f7e23a 1effaf5 2f7e23a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
"""
Define molecular dynamics tasks.
This script has been adapted from Atomate2 MLFF MD workflow written by Aaron Kaplan and Yuan Chiang
https://github.com/materialsproject/atomate2/blob/main/src/atomate2/forcefields/md.py
atomate2 Copyright (c) 2015, The Regents of the University of
California, through Lawrence Berkeley National Laboratory (subject
to receipt of any required approvals from the U.S. Dept. of Energy).
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
(1) Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
(2) Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with
the distribution.
(3) Neither the name of the University of California, Lawrence
Berkeley National Laboratory, U.S. Dept. of Energy nor the names of
its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
You are under no obligation whatsoever to provide any bug fixes,
patches, or upgrades to the features, functionality or performance
of the source code ("Enhancements") to anyone; however, if you
choose to make your Enhancements available either publicly, or
directly to Lawrence Berkeley National Laboratory or its
contributors, without imposing a separate written license agreement
for such Enhancements, then you hereby grant the following license:
a non-exclusive, royalty-free perpetual license to install, use,
modify, prepare derivative works, incorporate into other computer
software, distribute, and sublicense such enhancements or derivative
works thereof, in binary and source code form.
"""
from __future__ import annotations
from collections.abc import Sequence
from datetime import datetime, timedelta
from pathlib import Path
from typing import Literal
import numpy as np
from ase import Atoms, units
from ase.calculators.calculator import Calculator
from ase.calculators.mixing import SumCalculator
from ase.io import read
from ase.io.trajectory import Trajectory
from ase.md.andersen import Andersen
from ase.md.langevin import Langevin
from ase.md.md import MolecularDynamics
from ase.md.npt import NPT
from ase.md.nptberendsen import NPTBerendsen
from ase.md.nvtberendsen import NVTBerendsen
from ase.md.velocitydistribution import (
MaxwellBoltzmannDistribution,
Stationary,
ZeroRotation,
)
from ase.md.verlet import VelocityVerlet
from prefect import task
from prefect.tasks import task_input_hash
from scipy.interpolate import interp1d
from scipy.linalg import schur
from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator
from tqdm.auto import tqdm
from mlip_arena.models.utils import MLIPEnum, get_freer_device
_valid_dynamics: dict[str, tuple[str, ...]] = {
"nve": ("velocityverlet",),
"nvt": ("nose-hoover", "langevin", "andersen", "berendsen"),
"npt": ("nose-hoover", "berendsen"),
}
_preset_dynamics: dict = {
"nve_velocityverlet": VelocityVerlet,
"nvt_andersen": Andersen,
"nvt_berendsen": NVTBerendsen,
"nvt_langevin": Langevin,
"nvt_nose-hoover": NPT,
"npt_berendsen": NPTBerendsen,
"npt_nose-hoover": NPT,
}
def _interpolate_quantity(values: Sequence | np.ndarray, n_pts: int) -> np.ndarray:
"""Interpolate temperature / pressure on a schedule."""
n_vals = len(values)
return np.interp(
np.linspace(0, n_vals - 1, n_pts + 1),
np.linspace(0, n_vals - 1, n_vals),
values,
)
def _get_ensemble_schedule(
ensemble: Literal["nve", "nvt", "npt"] = "nvt",
n_steps: int = 1000,
temperature: float | Sequence | np.ndarray | None = 300.0,
pressure: float | Sequence | np.ndarray | None = None,
) -> tuple[np.ndarray, np.ndarray]:
if ensemble == "nve":
# Disable thermostat and barostat
temperature = np.nan
pressure = np.nan
t_schedule = np.full(n_steps + 1, temperature)
p_schedule = np.full(n_steps + 1, pressure)
return t_schedule, p_schedule
if isinstance(temperature, Sequence) or (
isinstance(temperature, np.ndarray) and temperature.ndim == 1
):
t_schedule = _interpolate_quantity(temperature, n_steps)
# NOTE: In ASE Langevin dynamics, the temperature are normally
# scalars, but in principle one quantity per atom could be specified by giving
# an array. This is not implemented yet here.
else:
t_schedule = np.full(n_steps + 1, temperature)
if ensemble == "nvt":
pressure = np.nan
p_schedule = np.full(n_steps + 1, pressure)
return t_schedule, p_schedule
if isinstance(pressure, Sequence) or (
isinstance(pressure, np.ndarray) and pressure.ndim == 1
):
p_schedule = _interpolate_quantity(pressure, n_steps)
elif isinstance(pressure, np.ndarray) and pressure.ndim == 4:
p_schedule = interp1d(np.arange(n_steps + 1), pressure, kind="linear")
assert isinstance(p_schedule, np.ndarray)
else:
p_schedule = np.full(n_steps + 1, pressure)
return t_schedule, p_schedule
def _get_ensemble_defaults(
ensemble: Literal["nve", "nvt", "npt"],
dynamics: str | MolecularDynamics,
t_schedule: np.ndarray,
p_schedule: np.ndarray,
ase_md_kwargs: dict | None = None,
) -> dict:
"""Update ASE MD kwargs"""
ase_md_kwargs = ase_md_kwargs or {}
if ensemble == "nve":
ase_md_kwargs.pop("temperature", None)
ase_md_kwargs.pop("temperature_K", None)
ase_md_kwargs.pop("externalstress", None)
elif ensemble == "nvt":
ase_md_kwargs["temperature_K"] = t_schedule[0]
ase_md_kwargs.pop("externalstress", None)
elif ensemble == "npt":
ase_md_kwargs["temperature_K"] = t_schedule[0]
ase_md_kwargs["externalstress"] = p_schedule[0] # * 1e3 * units.bar
if isinstance(dynamics, str) and dynamics.lower() == "langevin":
ase_md_kwargs["friction"] = ase_md_kwargs.get(
"friction",
10.0 * 1e-3 / units.fs, # Same default as in VASP: 10 ps^-1
)
return ase_md_kwargs
@task(cache_key_fn=task_input_hash, cache_expiration=timedelta(days=1))
def run(
atoms: Atoms,
calculator_name: str | MLIPEnum,
calculator_kwargs: dict | None,
dispersion: str | None = None,
dispersion_kwargs: dict | None = None,
device: str | None = None,
ensemble: Literal["nve", "nvt", "npt"] = "nvt",
dynamics: str | MolecularDynamics = "langevin",
time_step: float | None = None,
total_time: float = 1000,
temperature: float | Sequence | np.ndarray | None = 300.0,
pressure: float | Sequence | np.ndarray | None = None,
ase_md_kwargs: dict | None = None,
md_velocity_seed: int | None = None,
zero_linear_momentum: bool = True,
zero_angular_momentum: bool = True,
traj_file: str | Path | None = None,
traj_interval: int = 1,
restart: bool = True,
):
device = device or str(get_freer_device())
print(f"Using device: {device}")
calculator_kwargs = calculator_kwargs or {}
if isinstance(calculator_name, MLIPEnum) and calculator_name in MLIPEnum:
assert issubclass(calculator_name.value, Calculator)
calc = calculator_name.value(**calculator_kwargs)
elif (
isinstance(calculator_name, str) and calculator_name in MLIPEnum._member_names_
):
calc = MLIPEnum[calculator_name].value(**calculator_kwargs)
else:
raise ValueError(f"Invalid calculator: {calculator_name}")
print(f"Using calculator: {calc}")
dispersion_kwargs = dispersion_kwargs or {}
dispersion_kwargs.update({"device": device})
if dispersion is not None:
disp_calc = TorchDFTD3Calculator(
**dispersion_kwargs,
)
calc = SumCalculator([calc, disp_calc])
print(f"Using dispersion: {dispersion}")
atoms.calc = calc
if time_step is None:
# If a structure contains an isotope of hydrogen, set default `time_step`
# to 0.5 fs, and 2 fs otherwise.
has_h_isotope = "H" in atoms.get_chemical_symbols()
time_step = 0.5 if has_h_isotope else 2.0
n_steps = int(total_time / time_step)
target_steps = n_steps
t_schedule, p_schedule = _get_ensemble_schedule(
ensemble=ensemble,
n_steps=n_steps,
temperature=temperature,
pressure=pressure,
)
ase_md_kwargs = _get_ensemble_defaults(
ensemble=ensemble,
dynamics=dynamics,
t_schedule=t_schedule,
p_schedule=p_schedule,
ase_md_kwargs=ase_md_kwargs,
)
if isinstance(dynamics, str):
# Use known dynamics if `self.dynamics` is a str
dynamics = dynamics.lower()
if dynamics not in _valid_dynamics[ensemble]:
raise ValueError(
f"{dynamics} thermostat not available for {ensemble}."
f"Available {ensemble} thermostats are:"
" ".join(_valid_dynamics[ensemble])
)
if ensemble == "nve":
dynamics = "velocityverlet"
md_class = _preset_dynamics[f"{ensemble}_{dynamics}"]
elif dynamics is MolecularDynamics:
md_class = dynamics
else:
raise ValueError(f"Invalid dynamics: {dynamics}")
if md_class is NPT:
# Note that until md_func is instantiated, isinstance(md_func,NPT) is False
# ASE NPT implementation requires upper triangular cell
u, _ = schur(atoms.get_cell(complete=True), output="complex")
atoms.set_cell(u.real, scale_atoms=True)
last_step = 0
if traj_file is not None:
traj_file = Path(traj_file)
traj_file.parent.mkdir(parents=True, exist_ok=True)
if restart and traj_file.exists():
try:
traj = read(traj_file, index=":")
last_atoms = traj[-1]
assert isinstance(last_atoms, Atoms)
last_step = last_atoms.info.get("step", len(traj) * traj_interval)
n_steps -= last_step
traj = Trajectory(traj_file, "a", atoms)
atoms.set_positions(last_atoms.get_positions())
atoms.set_momenta(last_atoms.get_momenta())
except Exception:
traj = Trajectory(traj_file, "w", atoms)
if not np.isnan(t_schedule).any():
MaxwellBoltzmannDistribution(
atoms=atoms,
temperature_K=t_schedule[last_step],
rng=np.random.default_rng(seed=md_velocity_seed),
)
if zero_linear_momentum:
Stationary(atoms)
if zero_angular_momentum:
ZeroRotation(atoms)
else:
traj = Trajectory(traj_file, "w", atoms)
if not np.isnan(t_schedule).any():
MaxwellBoltzmannDistribution(
atoms=atoms,
temperature_K=t_schedule[last_step],
rng=np.random.default_rng(seed=md_velocity_seed),
)
if zero_linear_momentum:
Stationary(atoms)
if zero_angular_momentum:
ZeroRotation(atoms)
md_runner = md_class(
atoms=atoms,
timestep=time_step * units.fs,
**ase_md_kwargs,
)
if traj_file is not None:
md_runner.attach(traj.write, interval=traj_interval)
with tqdm(total=n_steps) as pbar:
def _callback(dyn: MolecularDynamics = md_runner) -> None:
step = last_step + dyn.nsteps
dyn.atoms.info["restart"] = last_step
dyn.atoms.info["datetime"] = datetime.now()
dyn.atoms.info["step"] = step
dyn.atoms.info["target_steps"] = target_steps
if ensemble == "nve":
return
dyn.set_temperature(temperature_K=t_schedule[step])
if ensemble == "nvt":
return
dyn.set_stress(p_schedule[step] * 1e3 * units.bar)
pbar.update()
md_runner.attach(_callback, interval=1)
start_time = datetime.now()
md_runner.run(steps=n_steps)
end_time = datetime.now()
traj.close()
return {
"atoms": atoms,
"runtime": end_time - start_time,
"n_steps": n_steps,
}
|