File size: 10,757 Bytes
e6cac5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba1879f
e6cac5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e8129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba1879f
05e8129
 
 
 
 
 
e6cac5c
 
 
 
 
 
 
ba1879f
e6cac5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcf00b7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from __future__ import annotations

from datetime import datetime, timedelta
from pathlib import Path
from typing import Literal, Sequence, Tuple

import numpy as np
from ase import Atoms, units
from ase.calculators.calculator import Calculator
from ase.calculators.mixing import SumCalculator
from ase.io import read
from ase.io.trajectory import Trajectory
from ase.md.andersen import Andersen
from ase.md.langevin import Langevin
from ase.md.md import MolecularDynamics
from ase.md.npt import NPT
from ase.md.nptberendsen import NPTBerendsen
from ase.md.nvtberendsen import NVTBerendsen
from ase.md.velocitydistribution import (
    MaxwellBoltzmannDistribution,
    Stationary,
    ZeroRotation,
)
from ase.md.verlet import VelocityVerlet
from prefect import task
from prefect.tasks import task_input_hash
from scipy.interpolate import interp1d
from scipy.linalg import schur
from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator
from tqdm.auto import tqdm

from mlip_arena.models.utils import MLIPEnum, get_freer_device

# from mlip_arena.models.utils import EXTMLIPEnum, MLIPMap, external_ase_calculator

_valid_dynamics: dict[str, tuple[str, ...]] = {
    "nve": ("velocityverlet",),
    "nvt": ("nose-hoover", "langevin", "andersen", "berendsen"),
    "npt": ("nose-hoover", "berendsen"),
}

_preset_dynamics: dict = {
    "nve_velocityverlet": VelocityVerlet,
    "nvt_andersen": Andersen,
    "nvt_berendsen": NVTBerendsen,
    "nvt_langevin": Langevin,
    "nvt_nose-hoover": NPT,
    "npt_berendsen": NPTBerendsen,
    "npt_nose-hoover": NPT,
}


def _interpolate_quantity(values: Sequence | np.ndarray, n_pts: int) -> np.ndarray:
    """Interpolate temperature / pressure on a schedule."""
    n_vals = len(values)
    return np.interp(
        np.linspace(0, n_vals - 1, n_pts + 1),
        np.linspace(0, n_vals - 1, n_vals),
        values,
    )


def _get_ensemble_schedule(
    ensemble: Literal["nve", "nvt", "npt"] = "nvt",
    n_steps: int = 1000,
    temperature: float | Sequence | np.ndarray | None = 300.0,
    pressure: float | Sequence | np.ndarray | None = None,
) -> Tuple[np.ndarray, np.ndarray]:
    if ensemble == "nve":
        # Disable thermostat and barostat
        temperature = np.nan
        pressure = np.nan
        t_schedule = np.full(n_steps + 1, temperature)
        p_schedule = np.full(n_steps + 1, pressure)
        return t_schedule, p_schedule

    if isinstance(temperature, Sequence) or (
        isinstance(temperature, np.ndarray) and temperature.ndim == 1
    ):
        t_schedule = _interpolate_quantity(temperature, n_steps)
    # NOTE: In ASE Langevin dynamics, the temperature are normally
    # scalars, but in principle one quantity per atom could be specified by giving
    # an array. This is not implemented yet here.
    else:
        t_schedule = np.full(n_steps + 1, temperature)

    if ensemble == "nvt":
        pressure = np.nan
        p_schedule = np.full(n_steps + 1, pressure)
        return t_schedule, p_schedule

    if isinstance(pressure, Sequence) or (
        isinstance(pressure, np.ndarray) and pressure.ndim == 1
    ):
        p_schedule = _interpolate_quantity(pressure, n_steps)
    elif isinstance(pressure, np.ndarray) and pressure.ndim == 4:
        p_schedule = interp1d(np.arange(n_steps + 1), pressure, kind="linear")
        assert isinstance(p_schedule, np.ndarray)
    else:
        p_schedule = np.full(n_steps + 1, pressure)

    return t_schedule, p_schedule


def _get_ensemble_defaults(
    ensemble: Literal["nve", "nvt", "npt"],
    dynamics: str | MolecularDynamics,
    t_schedule: np.ndarray,
    p_schedule: np.ndarray,
    ase_md_kwargs: dict | None = None,
) -> dict:
    """Update ASE MD kwargs"""
    ase_md_kwargs = ase_md_kwargs or {}

    if ensemble == "nve":
        ase_md_kwargs.pop("temperature", None)
        ase_md_kwargs.pop("temperature_K", None)
        ase_md_kwargs.pop("externalstress", None)
    elif ensemble == "nvt":
        ase_md_kwargs["temperature_K"] = t_schedule[0]
        ase_md_kwargs.pop("externalstress", None)
    elif ensemble == "npt":
        ase_md_kwargs["temperature_K"] = t_schedule[0]
        ase_md_kwargs["externalstress"] = p_schedule[0]  # * 1e3 * units.bar

    if isinstance(dynamics, str) and dynamics.lower() == "langevin":
        ase_md_kwargs["friction"] = ase_md_kwargs.get(
            "friction",
            10.0 * 1e-3 / units.fs,  # Same default as in VASP: 10 ps^-1
        )

    return ase_md_kwargs


@task(cache_key_fn=task_input_hash, cache_expiration=timedelta(days=1))
def md(
    atoms: Atoms,
    calculator_name: str | MLIPEnum,
    calculator_kwargs: dict | None,
    dispersion: str | None = None,
    dispersion_kwargs: dict | None = None,
    device: str | None = None,
    ensemble: Literal["nve", "nvt", "npt"] = "nvt",
    dynamics: str | MolecularDynamics = "langevin",
    time_step: float | None = None,
    total_time: float = 1000,
    temperature: float | Sequence | np.ndarray | None = 300.0,
    pressure: float | Sequence | np.ndarray | None = None,
    ase_md_kwargs: dict | None = None,
    md_velocity_seed: int | None = None,
    zero_linear_momentum: bool = True,
    zero_angular_momentum: bool = True,
    traj_file: str | Path | None = None,
    traj_interval: int = 1,
    restart: bool = True,
):
    device = device or str(get_freer_device())

    print(f"Using device: {device}")

    calculator_kwargs = calculator_kwargs or {}

    if isinstance(calculator_name, MLIPEnum) and calculator_name in MLIPEnum:
        assert issubclass(calculator_name.value, Calculator)
        calc = calculator_name.value(**calculator_kwargs)
    elif (
        isinstance(calculator_name, str) and calculator_name in MLIPEnum._member_names_
    ):
        calc = MLIPEnum[calculator_name].value(**calculator_kwargs)
    else:
        raise ValueError(f"Invalid calculator: {calculator_name}")

    print(f"Using calculator: {calc}")

    dispersion_kwargs = dispersion_kwargs or {}

    dispersion_kwargs.update({"device": device})

    if dispersion is not None:
        disp_calc = TorchDFTD3Calculator(
            **dispersion_kwargs,
        )
        calc = SumCalculator([calc, disp_calc])

        print(f"Using dispersion: {dispersion}")

    atoms.calc = calc

    if time_step is None:
        # If a structure contains an isotope of hydrogen, set default `time_step`
        # to 0.5 fs, and 2 fs otherwise.
        has_h_isotope = "H" in atoms.get_chemical_symbols()
        time_step = 0.5 if has_h_isotope else 2.0

    n_steps = int(total_time / time_step)
    target_steps = n_steps

    t_schedule, p_schedule = _get_ensemble_schedule(
        ensemble=ensemble,
        n_steps=n_steps,
        temperature=temperature,
        pressure=pressure,
    )

    ase_md_kwargs = _get_ensemble_defaults(
        ensemble=ensemble,
        dynamics=dynamics,
        t_schedule=t_schedule,
        p_schedule=p_schedule,
        ase_md_kwargs=ase_md_kwargs,
    )

    if isinstance(dynamics, str):
        # Use known dynamics if `self.dynamics` is a str
        dynamics = dynamics.lower()
        if dynamics not in _valid_dynamics[ensemble]:
            raise ValueError(
                f"{dynamics} thermostat not available for {ensemble}."
                f"Available {ensemble} thermostats are:"
                " ".join(_valid_dynamics[ensemble])
            )
        if ensemble == "nve":
            dynamics = "velocityverlet"
        md_class = _preset_dynamics[f"{ensemble}_{dynamics}"]
    elif dynamics is MolecularDynamics:
        md_class = dynamics
    else:
        raise ValueError(f"Invalid dynamics: {dynamics}")

    if md_class is NPT:
        #  Note that until md_func is instantiated, isinstance(md_func,NPT) is False
        # ASE NPT implementation requires upper triangular cell
        u, _ = schur(atoms.get_cell(complete=True), output="complex")
        atoms.set_cell(u.real, scale_atoms=True)

    last_step = 0

    if traj_file is not None:
        traj_file = Path(traj_file)
        traj_file.parent.mkdir(parents=True, exist_ok=True)

        if restart and traj_file.exists():
            try:
                traj = read(traj_file, index=":")
                last_atoms = traj[-1]
                assert isinstance(last_atoms, Atoms)
                last_step = last_atoms.info.get("step", len(traj) * traj_interval)
                n_steps -= last_step
                traj = Trajectory(traj_file, "a", atoms)
                atoms.set_positions(last_atoms.get_positions())
                atoms.set_momenta(last_atoms.get_momenta())
            except Exception:
                traj = Trajectory(traj_file, "w", atoms)

                if not np.isnan(t_schedule).any():
                    MaxwellBoltzmannDistribution(
                        atoms=atoms,
                        temperature_K=t_schedule[last_step],
                        rng=np.random.default_rng(seed=md_velocity_seed),
                    )

                if zero_linear_momentum:
                    Stationary(atoms)
                if zero_angular_momentum:
                    ZeroRotation(atoms)
        else:
            traj = Trajectory(traj_file, "w", atoms)

            if not np.isnan(t_schedule).any():
                MaxwellBoltzmannDistribution(
                    atoms=atoms,
                    temperature_K=t_schedule[last_step],
                    rng=np.random.default_rng(seed=md_velocity_seed),
                )

            if zero_linear_momentum:
                Stationary(atoms)
            if zero_angular_momentum:
                ZeroRotation(atoms)

    md_runner = md_class(
        atoms=atoms,
        timestep=time_step * units.fs,
        **ase_md_kwargs,
    )

    if traj_file is not None:
        md_runner.attach(traj.write, interval=traj_interval)

    with tqdm(total=n_steps) as pbar:

        def _callback(dyn: MolecularDynamics = md_runner) -> None:
            step = last_step + dyn.nsteps
            dyn.atoms.info["restart"] = last_step
            dyn.atoms.info["datetime"] = datetime.now()
            dyn.atoms.info["step"] = step
            dyn.atoms.info["target_steps"] = target_steps
            if ensemble == "nve":
                return
            dyn.set_temperature(temperature_K=t_schedule[step])
            if ensemble == "nvt":
                return
            dyn.set_stress(p_schedule[step] * 1e3 * units.bar)
            pbar.update()

        md_runner.attach(_callback, interval=1)

        start_time = datetime.now()
        md_runner.run(steps=n_steps)
        end_time = datetime.now()

        traj.close()

    return {
        "atoms": atoms,
        "runtime": end_time - start_time,
        "n_steps": n_steps,
    }