File size: 3,229 Bytes
e6cac5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from pathlib import Path

import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st
from scipy.optimize import curve_fit

from mlip_arena.models import REGISTRY

DATA_DIR = Path("mlip_arena/tasks/combustion")


st.markdown("""
# Combustion
""")

st.markdown("### Methods")
container = st.container(border=True)
valid_models = [model for model, metadata in REGISTRY.items() if Path(__file__).stem in metadata.get("gpu-tasks", [])]

models = container.multiselect("MLIPs", valid_models, ["MACE-MP(M)", "CHGNet", "EquiformerV2(OC22)"])

st.markdown("### Settings")
vis = st.container(border=True)
# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
    attr: getattr(pcolors.qualitative, attr)
    for attr in all_attributes
    if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)

palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())

palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)

color_sequence = color_palettes[palette_name]

if not models:
    st.stop()

families = [REGISTRY[str(model)]["family"] for model in models]

dfs = [
    pd.read_json(DATA_DIR / family.lower() / "hydrogen.json")
    for family in families
]
df = pd.concat(dfs, ignore_index=True)
df.drop_duplicates(inplace=True, subset=["formula", "method"])

method_color_mapping = {
    method: color_sequence[i % len(color_sequence)]
    for i, method in enumerate(df["method"].unique())
}

###

# Number of products
fig = go.Figure()

for method in df["method"].unique():
    row = df[df["method"] == method].iloc[0]
    fig.add_trace(
        go.Scatter(
            x=row["timesteps"],
            y=row["nproducts"],
            mode='lines',
            name=method,
            line=dict(color=method_color_mapping[method]),
            showlegend=True,
        ),
    )

fig.update_layout(
    title="Hydrogen Combusiton (2H2 + O2 -> 2H2O, 64 units)",
    xaxis_title="Timesteps",
    yaxis_title="Number of water molecules",
)

st.plotly_chart(fig)

# tempearture 

fig = go.Figure()

for method in df["method"].unique():
    row = df[df["method"] == method].iloc[0]
    fig.add_trace(
        go.Scatter(
            x=row["timesteps"],
            y=row["temperatures"],
            mode='markers',
            name=method,
            line=dict(color=method_color_mapping[method]),
            showlegend=True,
        ),
    )

target_steps = df["target_steps"].iloc[0]
fig.add_trace(
    go.Line(
        x=[0, target_steps/3, target_steps/3*2, target_steps],
        y=[300, 3000, 3000, 300],
        mode='lines',
        name="Target",
        line=dict(
            dash="dash",
        ),
        showlegend=True,
    ),
)

fig.update_layout(
    title="Hydrogen Combusiton (2H2 + O2 -> 2H2O, 64 units)",
    xaxis_title="Timesteps",
    yaxis_title="Temperatures",
    yaxis2=dict(
        title="Product Percentage (%)",
        overlaying="y",
        side="right",
        range=[0, 100],
        tickmode="sync"
    )
    # template="plotly_dark",
)

st.plotly_chart(fig)