File size: 5,768 Bytes
79edee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "from ase import units\n",
    "from dask.distributed import Client\n",
    "from dask_jobqueue import SLURMCluster\n",
    "from dotenv import load_dotenv\n",
    "from prefect import flow, task\n",
    "from prefect_dask import DaskTaskRunner\n",
    "\n",
    "from mlip_arena.models import REGISTRY, MLIPEnum\n",
    "from mlip_arena.tasks.md import run as MD\n",
    "from mlip_arena.tasks.stability.input import get_atoms_from_db\n",
    "\n",
    "load_dotenv()\n",
    "\n",
    "HF_TOKEN = os.environ.get(\"HF_TOKEN\", None)\n",
    "MP_API_KEY = os.environ.get(\"MP_API_KEY\", None)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "nodes_per_alloc = 1\n",
    "gpus_per_alloc = 4\n",
    "ntasks = 1\n",
    "\n",
    "cluster_kwargs = dict(\n",
    "    cores=1,\n",
    "    memory=\"64 GB\",\n",
    "    processes=1,\n",
    "    shebang=\"#!/bin/bash\",\n",
    "    account=\"matgen\",\n",
    "    walltime=\"04:00:00\",\n",
    "    # job_cpu=128,\n",
    "    job_mem=\"0\",\n",
    "    job_script_prologue=[\n",
    "        \"source ~/.bashrc\",\n",
    "        \"module load python\",\n",
    "        \"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\",\n",
    "    ],\n",
    "    job_directives_skip=[\"-n\", \"--cpus-per-task\", \"-J\"],\n",
    "    job_extra_directives=[\n",
    "        \"-J stability-nvt\",\n",
    "        \"-q preempt\",\n",
    "        \"--time-min=00:30:00\",\n",
    "        \"--comment=12:00:00\",\n",
    "        f\"-N {nodes_per_alloc}\",\n",
    "        \"-C gpu\",\n",
    "        f\"-G {gpus_per_alloc}\",\n",
    "    ],\n",
    ")\n",
    "\n",
    "cluster = SLURMCluster(**cluster_kwargs)\n",
    "print(cluster.job_script())\n",
    "cluster.adapt(minimum_jobs=10, maximum_jobs=50)\n",
    "client = Client(cluster)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from prefect.cache_policies import INPUTS, TASK_SOURCE\n",
    "from prefect.futures import wait\n",
    "\n",
    "from mlip_arena.tasks.utils import get_calculator\n",
    "\n",
    "selected_models = [\n",
    "    \"MACE-MP(M)\",\n",
    "    \"CHGNet\",\n",
    "    \"M3GNet\",\n",
    "    \"MatterSim\",\n",
    "    \"eqV2(OMat)\",\n",
    "    \"MACE-MPA\",\n",
    "    \"ORBv2\",\n",
    "    \"SevenNet\",\n",
    "    \"ALIGNN\",\n",
    "]\n",
    "\n",
    "\n",
    "@task(cache_policy=TASK_SOURCE + INPUTS)\n",
    "def run_one(\n",
    "    atoms,\n",
    "    model,\n",
    "):\n",
    "    try:\n",
    "        result = MD.with_options(\n",
    "            # timeout_seconds=600,\n",
    "            # retries=1,\n",
    "            refresh_cache=True\n",
    "        )(\n",
    "            atoms=atoms,\n",
    "            calculator=get_calculator(\n",
    "                model.name,\n",
    "                calculator_kwargs=None,\n",
    "            ),\n",
    "            ensemble=\"nvt\",\n",
    "            dynamics=\"nose-hoover\",\n",
    "            time_step=None,\n",
    "            dynamics_kwargs=dict(\n",
    "                ttime=25 * units.fs,\n",
    "                # pfactor=((75 * units.fs) ** 2) * 1e2 * units.GPa\n",
    "            ),\n",
    "            total_time=1e4,  # 5e4, # fs\n",
    "            temperature=[300, 3000],\n",
    "            pressure=None,\n",
    "            traj_file=f\"{REGISTRY[model.name]['family']}/{model.name}_{atoms.info.get('material_id', 'random')}_{atoms.get_chemical_formula()}_nvt.traj\",\n",
    "            traj_interval=10,\n",
    "        )\n",
    "    except Exception as e:\n",
    "        print(e)\n",
    "        return e\n",
    "\n",
    "    return result\n",
    "\n",
    "\n",
    "@flow\n",
    "def heat():\n",
    "    futures = []\n",
    "    # To download the database automatically, `huggingface_hub login` or provide HF_TOKEN\n",
    "    for atoms in get_atoms_from_db(\"random-mixture.db\", force_download=False):\n",
    "        for model in MLIPEnum:\n",
    "            if model.name not in selected_models:\n",
    "                continue\n",
    "\n",
    "            future = run_one.with_options(\n",
    "                timeout_seconds=600, retries=2, refresh_cache=False\n",
    "            ).submit(atoms.copy(), model)\n",
    "            futures.append(future)\n",
    "\n",
    "    wait(futures)\n",
    "\n",
    "    return [\n",
    "        f.result(timeout=None, raise_on_failure=False)\n",
    "        for f in futures\n",
    "        if f.state.is_completed()\n",
    "    ]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "heat.with_options(\n",
    "    task_runner=DaskTaskRunner(address=client.scheduler.address), log_prints=True\n",
    ")()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "mlip-arena",
   "language": "python",
   "name": "mlip-arena"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "state": {},
    "version_major": 2,
    "version_minor": 0
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}