Spaces:
Running
Running
File size: 2,246 Bytes
056d8d3 d390139 b3722a8 d390139 5716d3b b3722a8 a909029 5716d3b a909029 5716d3b a909029 8d70c47 056d8d3 b3722a8 5716d3b b3722a8 5716d3b 49d0cfc 5716d3b 49d0cfc 5716d3b 49d0cfc 5716d3b 49d0cfc 5716d3b 49d0cfc 5716d3b 49d0cfc 5716d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
from pathlib import Path
import yaml
from huggingface_hub import HfApi, HfFileSystem, hf_hub_download
# from mlip_arena.models import MLIP
# from mlip_arena.models import REGISTRY as MODEL_REGISTRY
try:
from .elasticity import run as ELASTICITY
from .eos import run as EOS
from .md import run as MD
from .neb import run as NEB
from .neb import run_from_endpoints as NEB_FROM_ENDPOINTS
from .optimize import run as OPT
from .phonon import run as PHONON
__all__ = ["OPT", "EOS", "MD", "NEB", "NEB_FROM_ENDPOINTS", "ELASTICITY", "PHONON"]
except ImportError:
pass
with open(Path(__file__).parent / "registry.yaml", encoding="utf-8") as f:
REGISTRY = yaml.safe_load(f)
# class Task:
# def __init__(self):
# self.name: str = self.__class__.__name__ # display name on the leaderboard
# def run_local(self, model: MLIP):
# """Run the task using the given model and return the results."""
# raise NotImplementedError
# def run_hf(self, model: MLIP):
# """Run the task using the given model and return the results."""
# raise NotImplementedError
# # Calcualte evaluation metrics and postprocessed data
# api = HfApi()
# api.upload_file(
# path_or_fileobj="results.json",
# path_in_repo=f"{self.__class__.__name__}/{model.__class__.__name__}/results.json", # Upload to a specific folder
# repo_id="atomind/mlip-arena",
# repo_type="dataset",
# )
# def run_nersc(self, model: MLIP):
# """Run the task using the given model and return the results."""
# raise NotImplementedError
# def get_results(self):
# """Get the results from the task."""
# # fs = HfFileSystem()
# # files = fs.glob(f"datasets/atomind/mlip-arena/{self.__class__.__name__}/*/*.json")
# for model, metadata in MODEL_REGISTRY.items():
# results = hf_hub_download(
# repo_id="atomind/mlip-arena",
# filename="results.json",
# subfolder=f"{self.__class__.__name__}/{model}",
# repo_type="dataset",
# revision=None,
# )
# return results
|