File size: 5,288 Bytes
f9d3b3b
2bbd13c
 
d72faca
 
 
c19aed5
78cdc34
 
5b01054
f1eddde
c19aed5
aecc8a6
f1eddde
 
 
 
 
2bbd13c
 
f1eddde
f9d3b3b
 
 
 
 
 
 
52c1bfb
f9d3b3b
 
aa496c2
f9d3b3b
8396dce
f9d3b3b
 
2bbd13c
78cdc34
e6cac5c
78cdc34
2bbd13c
e6cac5c
7c36d54
3b3aaa9
 
 
52c1bfb
5b01054
 
aa496c2
7f5709e
8396dce
2bbd13c
 
 
 
 
 
f9d3b3b
2bbd13c
 
f9d3b3b
 
 
 
 
 
 
 
9361457
3b3aaa9
f9d3b3b
af4a473
9361457
ba1879f
 
 
 
aa496c2
ba1879f
aa496c2
ba1879f
aa496c2
ba1879f
f9d3b3b
 
 
78cdc34
5b01054
ba1879f
5b01054
d72faca
5b01054
 
 
 
7c36d54
 
5b01054
 
 
7c36d54
 
5b01054
 
 
78cdc34
ba1879f
 
 
78cdc34
 
f9d3b3b
 
7dfb0b7
ba1879f
7dfb0b7
 
 
 
f9d3b3b
 
d937c80
 
7dfb0b7
f1eddde
 
 
 
c4ff088
 
c19aed5
c4ff088
f1eddde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import importlib
from pathlib import Path

import pandas as pd
import streamlit as st

from mlip_arena import PKG_DIR
from mlip_arena.models import REGISTRY as MODELS
from mlip_arena.tasks import REGISTRY as TASKS

# Read the data
DATA_DIR = PKG_DIR / "tasks" /"diatomics"

dfs = []
for model in MODELS:
    fpath = DATA_DIR / MODELS[model].get("family") / "homonuclear-diatomics.json"
    if fpath.exists():
        dfs.append(pd.read_json(fpath))
df = pd.concat(dfs, ignore_index=True)

# Create a table
table = pd.DataFrame(
    columns=[
        "Model",
        "Element Coverage",
        "Prediction",
        "NVT",
        "NPT",
        "Training Set",
        "Code",
        "Paper",
        "Checkpoint",
        "First Release",
        "License",
    ]
)

for model in MODELS:
    rows = df[df["method"] == model]
    metadata = MODELS.get(model, {})
    new_row = {
        "Model": model,
        "Element Coverage": len(rows["name"].unique()),
        "Prediction": metadata.get("prediction", None),
        "NVT": "✅" if metadata.get("nvt", False) else "❌",
        "NPT": "✅" if metadata.get("npt", False) else "❌",
        "Training Set": metadata.get("datasets", []),
        "Code": metadata.get("github", None) if metadata else None,
        "Paper": metadata.get("doi", None) if metadata else None,
        "Checkpoint": metadata.get("checkpoint", None),
        "First Release": metadata.get("date", None),
        "License": metadata.get("license", None),
    }
    table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True)

table.set_index("Model", inplace=True)

s = table.style.background_gradient(
    cmap="PuRd", subset=["Element Coverage"], vmin=0, vmax=120
)

st.warning(
    "MLIP Arena is currently in **pre-alpha**. The results are not stable. Please interpret them with care.",
    icon="⚠️",
)
st.info(
    "Contributions are welcome. For more information, visit https://github.com/atomind-ai/mlip-arena.",
    icon="🤗",
)

st.markdown(
    """
<h1 style='text-align: center;'>⚔️ MLIP Arena Leaderboard ⚔️</h1>

> MLIP Arena is a platform for evaluating foundation machine learning interatomic potentials (MLIPs) beyond conventional energy and force error metrics. It focuses on revealing the underlying physics and chemistry learned by these models and assessing their performance in molecular dynamics (MD) simulations. The platform's benchmarks are specifically designed to evaluate the readiness and reliability of open-source, open-weight models in accurately reproducing both qualitative and quantitative behaviors of atomic systems.

### :red[Introduction]

Foundation machine learning interatomic potentials (fMLIPs), trained on extensive databases containing millions of density functional theory (DFT) calculations, have demonstrated remarkable zero-shot predictive capabilities for complex atomic interactions. These potentials derive quantum mechanical insights with high accuracy, expressivity, and generalizability, significantly outperforming classical empirical force fields while maintaining comparable computational efficiency.

However, MLIPs trained on atomic energy and force labels do not necessarily capture the correct atomic interactions, even though they often excel in error-based metrics for bulk systems. To drive further advancements in this field, it is crucial to establish mechanisms that ensure fair and transparent benchmarking practices beyond basic regression metrics.

MLIP Arena aims to provide a fair and transparent platform for benchmarking MLIPs in a crowdsourced setting. Its primary goal is to uncover the learned physics and chemistry of open-source, open-weight MLIPs. The benchmarks are designed to be agnostic to both the underlying architecture and specific training targets, such as density functionals, ensuring a cross-comparable and unbiased evaluation.

""",
    unsafe_allow_html=True,
)


st.subheader(":red[Supported Models]")
st.dataframe(
    s,
    use_container_width=True,
    column_config={
        "Code": st.column_config.LinkColumn(
            # validate="^https://[a-z]+\.streamlit\.app$",
            width="medium",
            display_text="Link",
        ),
        "Paper": st.column_config.LinkColumn(
            # validate="^https://[a-z]+\.streamlit\.app$",
            width="medium",
            display_text="Link",
        ),
    },
)

# st.markdown("<h2 style='text-align: center;'>🏆 Task Ranks 🏆</h2>", unsafe_allow_html=True)

st.subheader(":red[Task Ranks]")

for task in TASKS:
    if TASKS[task]["rank-page"] is None:
        continue

    st.subheader(task, divider=True)

    task_module = importlib.import_module(f"ranks.{TASKS[task]['rank-page']}")

    #  Call the function from the imported module
    if hasattr(task_module, "render"):
        task_module.render()
        # if st.button(f"Go to task page"):
        #     st.switch_page(f"tasks/{TASKS[task]['task-page']}.py")
    else:
        st.write(
            "Rank metrics are not available yet but the task has been implemented. Please see the following task page for more information."
        )

    st.page_link(
        f"tasks/{TASKS[task]['task-page']}.py",
        label="Go to the associated task page",
        icon=":material/link:",
    )