File size: 8,767 Bytes
b881f30
 
 
d9ed521
 
 
b881f30
 
d9ed521
b881f30
 
af4a473
3eda6d3
606b930
9361457
3b3aaa9
606b930
 
 
 
 
b881f30
221dfe3
d9ed521
9361457
 
 
 
 
 
 
 
b9692e2
9361457
8396dce
b881f30
221dfe3
 
 
5b01054
606b930
b881f30
221dfe3
 
9361457
 
 
 
 
221dfe3
b881f30
221dfe3
 
b881f30
9361457
b881f30
9361457
 
0d1ce35
3b3aaa9
bcf00b7
d937c80
 
bcf00b7
 
d937c80
bcf00b7
 
 
d937c80
9361457
d937c80
 
8396dce
 
d937c80
 
 
 
 
 
bcf00b7
d937c80
b881f30
9361457
 
 
 
221dfe3
b881f30
d937c80
bcf00b7
d937c80
b881f30
d937c80
 
d9ed521
d937c80
9361457
d9ed521
d937c80
d9ed521
d937c80
d9ed521
d937c80
 
 
 
d9ed521
d937c80
 
 
221dfe3
d937c80
 
 
 
 
 
 
8396dce
 
 
 
d937c80
d9ed521
8396dce
 
 
 
d937c80
 
8396dce
 
 
 
 
d937c80
 
8396dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d937c80
8396dce
 
d937c80
8396dce
 
d937c80
 
 
 
8396dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d937c80
8396dce
 
d9ed521
d937c80
d9ed521
d937c80
 
 
 
 
 
 
 
bcf00b7
8396dce
d937c80
 
 
 
 
 
89bc52a
d937c80
 
 
 
 
 
 
 
 
52c1bfb
d937c80
 
 
 
 
 
 
 
 
 
 
d9ed521
 
 
d937c80
b881f30
d937c80
bcf00b7
d937c80
 
89bc52a
 
bcf00b7
d937c80
 
 
 
606b930
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from pathlib import Path

import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.graph_objects as go
import streamlit as st
from ase.data import chemical_symbols
from plotly.subplots import make_subplots
from scipy.interpolate import CubicSpline

from mlip_arena.models import REGISTRY

st.markdown(
    """
# Homonuclear Diatomics

Homonuclear diatomics are molecules composed of two atoms of the same element.
The potential energy curves of homonuclear diatomics are the most fundamental interactions between atoms in quantum chemistry.
"""
)

st.markdown("### Methods")
container = st.container(border=True)
valid_models = [
    model
    for model, metadata in REGISTRY.items()
    if Path(__file__).stem in metadata.get("gpu-tasks", [])
]
mlip_methods = container.multiselect(
    "MLIPs",
    valid_models,
    ["MACE-MP(M)", "CHGNet", "M3GNet", "MatterSim", "SevenNet", "ORBv2", "eqV2(OMat)"],
)
dft_methods = container.multiselect("DFT Methods", ["PBE"], ["PBE"])

st.markdown("### Settings")
vis = st.container(border=True)
energy_plot = vis.checkbox("Show energy curves", value=True)
force_plot = vis.checkbox("Show force curves", value=False)
ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=2)

# Get all attributes from pcolors.qualitative
all_attributes = dir(pcolors.qualitative)
color_palettes = {
    attr: getattr(pcolors.qualitative, attr)
    for attr in all_attributes
    if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)

palette_names = list(color_palettes.keys())
palette_colors = list(color_palettes.values())

palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)

color_sequence = color_palettes[palette_name]  # type: ignore
if not mlip_methods and not dft_methods:
    st.stop()


@st.cache_data
def get_data(mlip_methods, dft_methods):
    DATA_DIR = Path("mlip_arena/tasks/diatomics")

    dfs = [
        pd.read_json(
            DATA_DIR / REGISTRY[method]["family"] / "homonuclear-diatomics.json"
        )
        for method in mlip_methods
    ]
    dfs.extend(
        [
            pd.read_json(DATA_DIR / "vasp" / "homonuclear-diatomics.json")
            # for method in dft_methods
        ]
    )
    df = pd.concat(dfs, ignore_index=True)
    df.drop_duplicates(inplace=True, subset=["name", "method"])
    return df


df = get_data(mlip_methods, dft_methods)

method_color_mapping = {
    method: color_sequence[i % len(color_sequence)]
    for i, method in enumerate(df["method"].unique())
}


@st.cache_data
def get_plots(df, energy_plot: bool, force_plot: bool, method_color_mapping: dict):
    figs = []

    for i, symbol in enumerate(chemical_symbols[1:]):
        rows = df[df["name"] == symbol + symbol]

        if rows.empty:
            continue

        fig = make_subplots(specs=[[{"secondary_y": True}]])

        elo, flo = float("inf"), float("inf")

        for j, method in enumerate(rows["method"].unique()):
            if method not in mlip_methods and method not in dft_methods:
                continue
            row = rows[rows["method"] == method].iloc[0]

            rs = np.array(row["R"])
            es = np.array(row["E"])
            fs = np.array(row["F"])

            rs = np.array(rs)
            ind = np.argsort(rs)
            es = np.array(es)
            fs = np.array(fs)

            rs = rs[ind]
            es = es[ind]
            fs = fs[ind]
            
            # if method not in ["PBE"]:
            es = es - es[-1]


            # if method in ["PBE"]:
            #     xs = np.linspace(rs.min() * 0.99, rs.max() * 1.01, int(5e2))
            # else:
            xs = rs

            if energy_plot:
                # if "GPAW" in method:
                #     cs = CubicSpline(rs, es)
                #     ys = cs(xs)
                # else:
                ys = es

                elo = min(elo, max(ys.min() * 1.2, -15), -1)

                if method in ["PBE"]:
                    fig.add_trace(
                        go.Scatter(
                            x=xs,
                            y=ys,
                            mode="markers",
                            line=dict(
                                color=method_color_mapping[method],
                                width=3,
                            ),
                            name=method,
                        ),
                        secondary_y=False,
                    )
                    # xs = np.linspace(rs.min() * 0.99, rs.max() * 1.01, int(5e2))
                    # cs = CubicSpline(rs, es)
                    # ys = cs(xs)
                    # fig.add_trace(
                    #     go.Scatter(
                    #         x=xs,
                    #         y=ys,
                    #         mode="lines",
                    #         line=dict(
                    #             color=method_color_mapping[method],
                    #             width=3,
                    #         ),
                    #         name=method,
                    #         showlegend=False,
                    #     ),
                    #     secondary_y=False,
                    # )
                else:
                    fig.add_trace(
                        go.Scatter(
                            x=xs,
                            y=ys,
                            mode="lines",
                            line=dict(
                                color=method_color_mapping[method],
                                width=3,
                            ),
                            name=method,
                        ),
                        secondary_y=False,
                    )

            # if force_plot and method not in ["PBE"]:
            if force_plot:
                ys = fs

                flo = min(flo, max(ys.min() * 1.2, -50))

                if method in ["PBE"]:
                    fig.add_trace(
                        go.Scatter(
                            x=xs,
                            y=ys,
                            mode="lines+markers",
                            line=dict(
                                color=method_color_mapping[method],
                                width=2,
                                dash="dashdot",
                            ),
                            name=method,
                            showlegend=not energy_plot,
                        ),
                        secondary_y=True,
                    )
                else:
                    fig.add_trace(
                        go.Scatter(
                            x=xs,
                            y=ys,
                            mode="lines",
                            line=dict(
                                color=method_color_mapping[method],
                                width=2,
                                dash="dashdot",
                            ),
                            name=method,
                            showlegend=not energy_plot,
                        ),
                        secondary_y=True,
                    )

        name = f"{symbol}-{symbol}"

        fig.update_layout(
            showlegend=True,
            legend=dict(
                orientation="v",
                x=0.95,
                xanchor="right",
                y=1,
                yanchor="top",
                bgcolor="rgba(0, 0, 0, 0)",
                # traceorder='reversed',
                # entrywidth=0.3,
                # entrywidthmode='fraction',
            ),
            title_text=f"{name}",
            title_x=0.5,
        )

        # Set x-axis title
        fig.update_xaxes(title_text="Distance [Å]")

        # Set y-axes titles
        if energy_plot:
            fig.update_layout(
                yaxis=dict(
                    title=dict(text="Energy [eV]"),
                    side="left",
                    range=[elo, 2.0 * (abs(elo))],
                )
            )

        if force_plot:
            fig.update_layout(
                yaxis2=dict(
                    title=dict(text="Force [eV/Å]"),
                    side="right",
                    range=[flo, 1.0 * abs(flo)],
                    overlaying="y",
                    tickmode="sync",
                ),
            )

        # cols[i % ncols].plotly_chart(fig, use_container_width=True)

        figs.append(fig)

    return figs
    # fig.write_image(format='svg', file=img_dir / f"{name}.svg")


figs = get_plots(df, energy_plot, force_plot, method_color_mapping)

for i, fig in enumerate(figs):
    if i % ncols == 0:
        cols = st.columns(ncols)
    cols[i % ncols].plotly_chart(fig, use_container_width=True)