File size: 8,023 Bytes
75ac94f
 
 
 
 
 
 
 
 
 
 
 
fdf446a
75ac94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from pathlib import Path

import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.graph_objects as go
import streamlit as st
from ase.db import connect
from scipy import stats

from mlip_arena.models import REGISTRY as MODELS

DATA_DIR = Path("benchmarks/wbm_ev")

st.markdown("""
# Energy-volume scans
""")

# Control panels at the top
st.markdown("### Methods")
methods_container = st.container(border=True)

# Get valid models that support wbm_ev
valid_models = [
    model
    for model, metadata in MODELS.items()
    if Path(__file__).stem in metadata.get("gpu-tasks", [])
]

# Model selection
selected_models = methods_container.multiselect(
    "Select Models",
    options=valid_models,
    default=valid_models
)

# Visualization settings
st.markdown("### Visualization Settings")
vis = st.container(border=True)

# Column settings
ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=2)

# Color palette selection
all_attributes = dir(pcolors.qualitative)
color_palettes = {
    attr: getattr(pcolors.qualitative, attr)
    for attr in all_attributes
    if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)

palette_names = list(color_palettes.keys())
palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
color_sequence = color_palettes[palette_name]

# Stop execution if no models selected
if not selected_models:
    st.warning("Please select at least one model to visualize.")
    st.stop()


def load_wbm_structures():
    """
    Load the WBM structures from a ASE DB file.
    """
    with connect(DATA_DIR.parent / "wbm_structures.db") as db:
        for row in db.select():
            yield row.toatoms(add_additional_information=True)


@st.cache_data
def generate_dataframe(model_name):
    fpath = DATA_DIR / f"{model_name}.parquet"
    if not fpath.exists():
        return pd.DataFrame()  # Return empty dataframe instead of using continue

    df_raw_results = pd.read_parquet(fpath)

    df_analyzed = pd.DataFrame(
        columns=[
            "model",
            "structure",
            "formula",
            "volume-ratio",
            "energy-delta-per-atom",
            "energy-diff-flip-times",
            "tortuosity",
            "spearman-compression-energy",
            "spearman-compression-derivative",
            "spearman-tension-energy",
            "missing",
        ]
    )

    for wbm_struct in load_wbm_structures():
        structure_id = wbm_struct.info["key_value_pairs"]["wbm_id"]

        try:
            results = df_raw_results.loc[df_raw_results["id"] == structure_id]
            results = results["eos"].values[0]
            es = np.array(results["energies"])
            vols = np.array(results["volumes"])
            vol0 = wbm_struct.get_volume()

            indices = np.argsort(vols)
            vols = vols[indices]
            es = es[indices]

            imine = len(es) // 2
            # min_center_val = np.min(es[imid - 1 : imid + 2])
            # imine = np.where(es == min_center_val)[0][0]
            emin = es[imine]

            interpolated_volumes = [
                (vols[i] + vols[i + 1]) / 2 for i in range(len(vols) - 1)
            ]
            ediff = np.diff(es)
            ediff_sign = np.sign(ediff)
            mask = ediff_sign != 0
            ediff = ediff[mask]
            ediff_sign = ediff_sign[mask]
            ediff_flip = np.diff(ediff_sign) != 0

            etv = np.sum(np.abs(np.diff(es)))

            data = {
                "model": model_name,
                "structure": structure_id,
                "formula": wbm_struct.get_chemical_formula(),
                "missing": False,
                "volume-ratio": vols / vol0,
                "energy-delta-per-atom": (es - emin) / len(wbm_struct),
                "energy-diff-flip-times": np.sum(ediff_flip).astype(int),
                "tortuosity": etv / (abs(es[0] - emin) + abs(es[-1] - emin)),
                "spearman-compression-energy": stats.spearmanr(
                    vols[:imine], es[:imine]
                ).statistic,
                "spearman-compression-derivative": stats.spearmanr(
                    interpolated_volumes[:imine], ediff[:imine]
                ).statistic,
                "spearman-tension-energy": stats.spearmanr(
                    vols[imine:], es[imine:]
                ).statistic,
            }

        except Exception:
            data = {
                "model": model_name,
                "structure": structure_id,
                "formula": wbm_struct.get_chemical_formula(),
                "missing": True,
                "volume-ratio": None,
                "energy-delta-per-atom": None,
                "energy-diff-flip-times": None,
                "tortuosity": None,
                "spearman-compression-energy": None,
                "spearman-compression-derivative": None,
                "spearman-tension-energy": None,
            }

        df_analyzed = pd.concat([df_analyzed, pd.DataFrame([data])], ignore_index=True)

    return df_analyzed


@st.cache_data
def get_plots(selected_models):
    """Generate one plot per model with all structures (legend disabled for each structure)."""
    figs = []

    for model_name in selected_models:

        fpath = DATA_DIR / f"{model_name}_processed.parquet"
        if not fpath.exists():
            df = generate_dataframe(model_name)
        else:
            df = pd.read_parquet(fpath)

        if len(df) == 0:
            continue

        fig = go.Figure()
        valid_structures = []
        for i, (_, row) in enumerate(df.iterrows()):
            structure_id = row["structure"]
            formula = row.get("formula", "")
            if isinstance(row["volume-ratio"], list | np.ndarray) and isinstance(
                row["energy-delta-per-atom"], list | np.ndarray
            ):
                vol_strain = row["volume-ratio"]
                energy_delta = row["energy-delta-per-atom"]
                color = color_sequence[i % len(color_sequence)]
                fig.add_trace(
                    go.Scatter(
                        x=vol_strain,
                        y=energy_delta,
                        mode="lines",
                        name=f"{structure_id}",
                        showlegend=False,
                        line=dict(color=color),
                        hoverlabel=dict(bgcolor=color, font=dict(color="black")),
                        hovertemplate=(
                            structure_id + "<br>"
                            "Formula: " + str(formula) + "<br>"
                            "Volume ratio V/V₀: %{x:.3f}<br>"
                            "ΔEnergy: %{y:.3f} eV/atom<br>"
                            "<extra></extra>"
                        ),

                    )
                )
                valid_structures.append(structure_id)

        # if valid_structures:
        fig.update_layout(
            title=f"{model_name} ({len(valid_structures)} / {len(df)} structures)",
            xaxis_title="Volume ratio V/V₀",
            yaxis_title="Relative energy E - E₀ (eV/atom)",
            height=500,
            showlegend=False,  # Disable legend for the whole plot
            yaxis=dict(range=[-1, 15]),  # Set y-axis limits
        )
        fig.add_vline(x=1, line_dash="dash", line_color="gray", opacity=0.7)
        figs.append((model_name, fig, valid_structures))

    return figs


# Generate all plots
all_plots = get_plots(selected_models)

# Display plots in the specified column layout
if all_plots:
    for i, (model_name, fig, structures) in enumerate(all_plots):
        if i % ncols == 0:
            cols = st.columns(ncols)
        cols[i % ncols].plotly_chart(fig, use_container_width=True)

        # Display number of structures in this plot
        # cols[i % ncols].caption(f"{len(structures)} / 1000 structures")
else:
    st.warning("No data available for the selected models.")