Spaces:
Running
Running
from pathlib import Path | |
import numpy as np | |
import pandas as pd | |
import plotly.colors as pcolors | |
import plotly.graph_objects as go | |
import streamlit as st | |
from ase.db import connect | |
from scipy import stats | |
from mlip_arena.models import REGISTRY as MODELS | |
DATA_DIR = Path("examples/eos_bulk") | |
st.markdown(""" | |
# Equation of state (EOS) | |
""") | |
# Control panels at the top | |
st.markdown("### Methods") | |
methods_container = st.container(border=True) | |
valid_models = [ | |
model | |
for model, metadata in MODELS.items() | |
if Path(__file__).stem in metadata.get("gpu-tasks", []) | |
] | |
# Model selection | |
selected_models = methods_container.multiselect( | |
"Select Models", | |
options=valid_models, | |
default=valid_models | |
) | |
# Visualization settings | |
st.markdown("### Visualization Settings") | |
vis = st.container(border=True) | |
# Column settings | |
ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=2) | |
# Color palette selection | |
all_attributes = dir(pcolors.qualitative) | |
color_palettes = { | |
attr: getattr(pcolors.qualitative, attr) | |
for attr in all_attributes | |
if isinstance(getattr(pcolors.qualitative, attr), list) | |
} | |
color_palettes.pop("__all__", None) | |
palette_names = list(color_palettes.keys()) | |
palette_name = vis.selectbox("Color sequence", options=palette_names, index=22) | |
color_sequence = color_palettes[palette_name] | |
# Stop execution if no models selected | |
if not selected_models: | |
st.warning("Please select at least one model to visualize.") | |
st.stop() | |
def load_wbm_structures(): | |
""" | |
Load the WBM structures from a ASE DB file. | |
""" | |
with connect(DATA_DIR.parent / "wbm_structures.db") as db: | |
for row in db.select(): | |
yield row.toatoms(add_additional_information=True) | |
def generate_dataframe(model_name): | |
fpath = DATA_DIR / f"{model_name}.parquet" | |
if not fpath.exists(): | |
return pd.DataFrame() # Return empty dataframe instead of using continue | |
df_raw_results = pd.read_parquet(fpath) | |
df_analyzed = pd.DataFrame( | |
columns=[ | |
"model", | |
"structure", | |
"formula", | |
"volume-ratio", | |
"energy-delta-per-atom", | |
"energy-diff-flip-times", | |
"tortuosity", | |
"spearman-compression-energy", | |
"spearman-compression-derivative", | |
"spearman-tension-energy", | |
"missing", | |
] | |
) | |
for wbm_struct in load_wbm_structures(): | |
structure_id = wbm_struct.info["key_value_pairs"]["wbm_id"] | |
try: | |
results = df_raw_results.loc[df_raw_results["id"] == structure_id] | |
results = results["eos"].values[0] | |
es = np.array(results["energies"]) | |
vols = np.array(results["volumes"]) | |
vol0 = wbm_struct.get_volume() | |
indices = np.argsort(vols) | |
vols = vols[indices] | |
es = es[indices] | |
imine = len(es) // 2 | |
# min_center_val = np.min(es[imid - 1 : imid + 2]) | |
# imine = np.where(es == min_center_val)[0][0] | |
emin = es[imine] | |
interpolated_volumes = [ | |
(vols[i] + vols[i + 1]) / 2 for i in range(len(vols) - 1) | |
] | |
ediff = np.diff(es) | |
ediff_sign = np.sign(ediff) | |
mask = ediff_sign != 0 | |
ediff = ediff[mask] | |
ediff_sign = ediff_sign[mask] | |
ediff_flip = np.diff(ediff_sign) != 0 | |
etv = np.sum(np.abs(np.diff(es))) | |
data = { | |
"model": model_name, | |
"structure": structure_id, | |
"formula": wbm_struct.get_chemical_formula(), | |
"missing": False, | |
"volume-ratio": vols / vol0, | |
"energy-delta-per-atom": (es - emin) / len(wbm_struct), | |
"energy-diff-flip-times": np.sum(ediff_flip).astype(int), | |
"tortuosity": etv / (abs(es[0] - emin) + abs(es[-1] - emin)), | |
"spearman-compression-energy": stats.spearmanr( | |
vols[:imine], es[:imine] | |
).statistic, | |
"spearman-compression-derivative": stats.spearmanr( | |
interpolated_volumes[:imine], ediff[:imine] | |
).statistic, | |
"spearman-tension-energy": stats.spearmanr( | |
vols[imine:], es[imine:] | |
).statistic, | |
} | |
except Exception: | |
data = { | |
"model": model_name, | |
"structure": structure_id, | |
"formula": wbm_struct.get_chemical_formula(), | |
"missing": True, | |
"volume-ratio": None, | |
"energy-delta-per-atom": None, | |
"energy-diff-flip-times": None, | |
"tortuosity": None, | |
"spearman-compression-energy": None, | |
"spearman-compression-derivative": None, | |
"spearman-tension-energy": None, | |
} | |
df_analyzed = pd.concat([df_analyzed, pd.DataFrame([data])], ignore_index=True) | |
return df_analyzed | |
def get_plots(selected_models): | |
"""Generate one plot per model with all structures (legend disabled for each structure).""" | |
figs = [] | |
for model_name in selected_models: | |
fpath = DATA_DIR / f"{model_name}_processed.parquet" | |
if not fpath.exists(): | |
df = generate_dataframe(model_name) | |
else: | |
df = pd.read_parquet(fpath) | |
if len(df) == 0: | |
continue | |
fig = go.Figure() | |
valid_structures = [] | |
for i, (_, row) in enumerate(df.iterrows()): | |
structure_id = row["structure"] | |
formula = row.get("formula", "") | |
if isinstance(row["volume-ratio"], list | np.ndarray) and isinstance( | |
row["energy-delta-per-atom"], list | np.ndarray | |
): | |
vol_strain = row["volume-ratio"] | |
energy_delta = row["energy-delta-per-atom"] | |
color = color_sequence[i % len(color_sequence)] | |
fig.add_trace( | |
go.Scatter( | |
x=vol_strain, | |
y=energy_delta, | |
mode="lines", | |
name=f"{structure_id}", | |
showlegend=False, | |
line=dict(color=color), | |
hoverlabel=dict(bgcolor=color, font=dict(color="black")), | |
hovertemplate=( | |
structure_id + "<br>" | |
"Formula: " + str(formula) + "<br>" | |
"Volume ratio V/V₀: %{x:.3f}<br>" | |
"ΔEnergy: %{y:.3f} eV/atom<br>" | |
"<extra></extra>" | |
), | |
) | |
) | |
valid_structures.append(structure_id) | |
# if valid_structures: | |
fig.update_layout( | |
title=f"{model_name} ({len(valid_structures)} / {len(df)} structures)", | |
xaxis_title="Volume ratio V/V₀", | |
yaxis_title="Relative energy ΔE (eV/atom)", | |
height=500, | |
showlegend=False, # Disable legend for the whole plot | |
yaxis=dict(range=[-0.1, 1]), # Set y-axis limits | |
) | |
fig.add_vline(x=1, line_dash="dash", line_color="gray", opacity=0.7) | |
figs.append((model_name, fig, valid_structures)) | |
return figs | |
# Generate all plots | |
all_plots = get_plots(selected_models) | |
# Display plots in the specified column layout | |
if all_plots: | |
for i, (model_name, fig, structures) in enumerate(all_plots): | |
if i % ncols == 0: | |
cols = st.columns(ncols) | |
cols[i % ncols].plotly_chart(fig, use_container_width=True) | |
# Display number of structures in this plot | |
# cols[i % ncols].caption(f"{len(structures)} / 1000 structures") | |
else: | |
st.warning("No data available for the selected models.") | |