cyrusyc's picture
add orb model to diatomic tasks
05e8129
raw
history blame
10.7 kB
from __future__ import annotations
from datetime import datetime, timedelta
from pathlib import Path
from typing import Literal, Sequence, Tuple
import numpy as np
from ase import Atoms, units
from ase.calculators.calculator import Calculator
from ase.calculators.mixing import SumCalculator
from ase.io import read
from ase.io.trajectory import Trajectory
from ase.md.andersen import Andersen
from ase.md.langevin import Langevin
from ase.md.md import MolecularDynamics
from ase.md.npt import NPT
from ase.md.nptberendsen import NPTBerendsen
from ase.md.nvtberendsen import NVTBerendsen
from ase.md.velocitydistribution import (
MaxwellBoltzmannDistribution,
Stationary,
ZeroRotation,
)
from ase.md.verlet import VelocityVerlet
from prefect import task
from prefect.tasks import task_input_hash
from scipy.interpolate import interp1d
from scipy.linalg import schur
from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator
from tqdm.auto import tqdm
from mlip_arena.models.utils import MLIPEnum, get_freer_device
# from mlip_arena.models.utils import EXTMLIPEnum, MLIPMap, external_ase_calculator
_valid_dynamics: dict[str, tuple[str, ...]] = {
"nve": ("velocityverlet",),
"nvt": ("nose-hoover", "langevin", "andersen", "berendsen"),
"npt": ("nose-hoover", "berendsen"),
}
_preset_dynamics: dict = {
"nve_velocityverlet": VelocityVerlet,
"nvt_andersen": Andersen,
"nvt_berendsen": NVTBerendsen,
"nvt_langevin": Langevin,
"nvt_nose-hoover": NPT,
"npt_berendsen": NPTBerendsen,
"npt_nose-hoover": NPT,
}
def _interpolate_quantity(values: Sequence | np.ndarray, n_pts: int) -> np.ndarray:
"""Interpolate temperature / pressure on a schedule."""
n_vals = len(values)
return np.interp(
np.linspace(0, n_vals - 1, n_pts + 1),
np.linspace(0, n_vals - 1, n_vals),
values,
)
def _get_ensemble_schedule(
ensemble: Literal["nve", "nvt", "npt"] = "nvt",
n_steps: int = 1000,
temperature: float | Sequence | np.ndarray | None = 300.0,
pressure: float | Sequence | np.ndarray | None = None,
) -> Tuple[np.ndarray, np.ndarray]:
if ensemble == "nve":
# Disable thermostat and barostat
temperature = np.nan
pressure = np.nan
t_schedule = np.full(n_steps + 1, temperature)
p_schedule = np.full(n_steps + 1, pressure)
return t_schedule, p_schedule
if isinstance(temperature, Sequence) or (
isinstance(temperature, np.ndarray) and temperature.ndim == 1
):
t_schedule = _interpolate_quantity(temperature, n_steps)
# NOTE: In ASE Langevin dynamics, the temperature are normally
# scalars, but in principle one quantity per atom could be specified by giving
# an array. This is not implemented yet here.
else:
t_schedule = np.full(n_steps + 1, temperature)
if ensemble == "nvt":
pressure = np.nan
p_schedule = np.full(n_steps + 1, pressure)
return t_schedule, p_schedule
if isinstance(pressure, Sequence) or (
isinstance(pressure, np.ndarray) and pressure.ndim == 1
):
p_schedule = _interpolate_quantity(pressure, n_steps)
elif isinstance(pressure, np.ndarray) and pressure.ndim == 4:
p_schedule = interp1d(np.arange(n_steps + 1), pressure, kind="linear")
assert isinstance(p_schedule, np.ndarray)
else:
p_schedule = np.full(n_steps + 1, pressure)
return t_schedule, p_schedule
def _get_ensemble_defaults(
ensemble: Literal["nve", "nvt", "npt"],
dynamics: str | MolecularDynamics,
t_schedule: np.ndarray,
p_schedule: np.ndarray,
ase_md_kwargs: dict | None = None,
) -> dict:
"""Update ASE MD kwargs"""
ase_md_kwargs = ase_md_kwargs or {}
if ensemble == "nve":
ase_md_kwargs.pop("temperature", None)
ase_md_kwargs.pop("temperature_K", None)
ase_md_kwargs.pop("externalstress", None)
elif ensemble == "nvt":
ase_md_kwargs["temperature_K"] = t_schedule[0]
ase_md_kwargs.pop("externalstress", None)
elif ensemble == "npt":
ase_md_kwargs["temperature_K"] = t_schedule[0]
ase_md_kwargs["externalstress"] = p_schedule[0] # * 1e3 * units.bar
if isinstance(dynamics, str) and dynamics.lower() == "langevin":
ase_md_kwargs["friction"] = ase_md_kwargs.get(
"friction",
10.0 * 1e-3 / units.fs, # Same default as in VASP: 10 ps^-1
)
return ase_md_kwargs
@task(cache_key_fn=task_input_hash, cache_expiration=timedelta(days=1))
def md(
atoms: Atoms,
calculator_name: str | MLIPEnum,
calculator_kwargs: dict | None,
dispersion: str | None = None,
dispersion_kwargs: dict | None = None,
device: str | None = None,
ensemble: Literal["nve", "nvt", "npt"] = "nvt",
dynamics: str | MolecularDynamics = "langevin",
time_step: float | None = None,
total_time: float = 1000,
temperature: float | Sequence | np.ndarray | None = 300.0,
pressure: float | Sequence | np.ndarray | None = None,
ase_md_kwargs: dict | None = None,
mb_velocity_seed: int | None = None,
zero_linear_momentum: bool = True,
zero_angular_momentum: bool = True,
traj_file: str | Path | None = None,
traj_interval: int = 1,
restart: bool = True,
):
device = device or str(get_freer_device())
print(f"Using device: {device}")
calculator_kwargs = calculator_kwargs or {}
if isinstance(calculator_name, MLIPEnum) and calculator_name in MLIPEnum:
assert issubclass(calculator_name.value, Calculator)
calc = calculator_name.value(**calculator_kwargs)
elif (
isinstance(calculator_name, str) and calculator_name in MLIPEnum._member_names_
):
calc = MLIPEnum[calculator_name].value(**calculator_kwargs)
else:
raise ValueError(f"Invalid calculator: {calculator_name}")
print(f"Using calculator: {calc}")
dispersion_kwargs = dispersion_kwargs or {}
dispersion_kwargs.update({"device": device})
if dispersion is not None:
disp_calc = TorchDFTD3Calculator(
**dispersion_kwargs,
)
calc = SumCalculator([calc, disp_calc])
print(f"Using dispersion: {dispersion}")
atoms.calc = calc
if time_step is None:
# If a structure contains an isotope of hydrogen, set default `time_step`
# to 0.5 fs, and 2 fs otherwise.
has_h_isotope = "H" in atoms.get_chemical_symbols()
time_step = 0.5 if has_h_isotope else 2.0
n_steps = int(total_time / time_step)
target_steps = n_steps
t_schedule, p_schedule = _get_ensemble_schedule(
ensemble=ensemble,
n_steps=n_steps,
temperature=temperature,
pressure=pressure,
)
ase_md_kwargs = _get_ensemble_defaults(
ensemble=ensemble,
dynamics=dynamics,
t_schedule=t_schedule,
p_schedule=p_schedule,
ase_md_kwargs=ase_md_kwargs,
)
if isinstance(dynamics, str):
# Use known dynamics if `self.dynamics` is a str
dynamics = dynamics.lower()
if dynamics not in _valid_dynamics[ensemble]:
raise ValueError(
f"{dynamics} thermostat not available for {ensemble}."
f"Available {ensemble} thermostats are:"
" ".join(_valid_dynamics[ensemble])
)
if ensemble == "nve":
dynamics = "velocityverlet"
md_class = _preset_dynamics[f"{ensemble}_{dynamics}"]
elif dynamics is MolecularDynamics:
md_class = dynamics
else:
raise ValueError(f"Invalid dynamics: {dynamics}")
if md_class is NPT:
# Note that until md_func is instantiated, isinstance(md_func,NPT) is False
# ASE NPT implementation requires upper triangular cell
u, _ = schur(atoms.get_cell(complete=True), output="complex")
atoms.set_cell(u.real, scale_atoms=True)
last_step = 0
if traj_file is not None:
traj_file = Path(traj_file)
traj_file.parent.mkdir(parents=True, exist_ok=True)
if restart and traj_file.exists():
try:
traj = read(traj_file, index=":")
last_atoms = traj[-1]
assert isinstance(last_atoms, Atoms)
last_step = last_atoms.info.get("step", len(traj) * traj_interval)
n_steps -= last_step
traj = Trajectory(traj_file, "a", atoms)
atoms.set_positions(last_atoms.get_positions())
atoms.set_momenta(last_atoms.get_momenta())
except Exception:
traj = Trajectory(traj_file, "w", atoms)
if not np.isnan(t_schedule).any():
MaxwellBoltzmannDistribution(
atoms=atoms,
temperature_K=t_schedule[last_step],
rng=np.random.default_rng(seed=mb_velocity_seed),
)
if zero_linear_momentum:
Stationary(atoms)
if zero_angular_momentum:
ZeroRotation(atoms)
else:
traj = Trajectory(traj_file, "w", atoms)
if not np.isnan(t_schedule).any():
MaxwellBoltzmannDistribution(
atoms=atoms,
temperature_K=t_schedule[last_step],
rng=np.random.default_rng(seed=mb_velocity_seed),
)
if zero_linear_momentum:
Stationary(atoms)
if zero_angular_momentum:
ZeroRotation(atoms)
md_runner = md_class(
atoms=atoms,
timestep=time_step * units.fs,
**ase_md_kwargs,
)
if traj_file is not None:
md_runner.attach(traj.write, interval=traj_interval)
with tqdm(total=n_steps) as pbar:
def _callback(dyn: MolecularDynamics = md_runner) -> None:
step = last_step + dyn.nsteps
dyn.atoms.info["restart"] = last_step
dyn.atoms.info["datetime"] = datetime.now()
dyn.atoms.info["step"] = step
dyn.atoms.info["target_steps"] = target_steps
if ensemble == "nve":
return
dyn.set_temperature(temperature_K=t_schedule[step])
if ensemble == "nvt":
return
dyn.set_stress(p_schedule[step] * 1e3 * units.bar)
pbar.update()
md_runner.attach(_callback, interval=1)
start_time = datetime.now()
md_runner.run(steps=n_steps)
end_time = datetime.now()
traj.close()
return {"runtime": end_time - start_time, "n_steps": n_steps}