cyrusyc's picture
add jobs tasks
b3722a8
raw
history blame
1.73 kB
import os
import torch
import yaml
from ase import Atoms
from ase.calculators.calculator import Calculator, all_changes
from torch import nn
from torch_geometric.data import Data
with open(os.path.join(os.path.dirname(__file__), "registry.yaml")) as f:
REGISTRY = yaml.load(f, Loader=yaml.FullLoader)
class MLIP(Calculator):
def __init__(self,
model_path: str = None,
device: torch.device = None):
super().__init__()
self.name: str = self.__class__.__name__
self.version: str = None
self.device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model: nn.Module = torch.load(model_path, map_location=self.device)
self.implemented_properties = ["energy", "forces"]
def calculate(self, atoms: Atoms, properties: list[str], system_changes: dict = all_changes):
"""Calculate energies and forces for the given Atoms object"""
super().calculate(atoms, properties, system_changes)
output = self.forward(atoms)
self.results = {}
if "energy" in properties:
self.results["energy"] = output["energy"].item()
if "forces" in properties:
self.results["forces"] = output["forces"].cpu().detach().numpy()
def forward(self, x: Data | Atoms) -> dict[str, torch.Tensor]:
"""Implement data conversion, graph creation, and model forward pass
Example implementation:
1. Use `ase.neighborlist.NeighborList` to get neighbor list
2. Create `torch_geometric.data.Data` object and copy the data
3. Pass the `Data` object to the model and return the output
"""
raise NotImplementedError