Spaces:
Running
Running
from pathlib import Path | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
from mlip_arena.models import REGISTRY as MODELS | |
valid_models = [ | |
model | |
for model, metadata in MODELS.items() | |
if Path(__file__).stem in metadata.get("gpu-tasks", []) | |
] | |
DATA_DIR = Path("mlip_arena/tasks/diatomics") | |
dfs = [ | |
pd.read_json(DATA_DIR / MODELS[model].get("family") / "homonuclear-diatomics.json") | |
for model in valid_models | |
] | |
df = pd.concat(dfs, ignore_index=True) | |
table = pd.DataFrame() | |
for model in valid_models: | |
rows = df[df["method"] == model] | |
metadata = MODELS.get(model, {}) | |
new_row = { | |
"Model": model, | |
"Conservation deviation [eV/Å]": rows["conservation-deviation"].mean(), | |
"Spearman's coeff. (E: repulsion)": rows[ | |
"spearman-repulsion-energy" | |
].mean(), | |
"Spearman's coeff. (F: descending)": rows[ | |
"spearman-descending-force" | |
].mean(), | |
"Tortuosity": rows["tortuosity"].mean(), | |
"Energy jump [eV]": rows["energy-jump"].mean(), | |
"Force flips": rows["force-flip-times"].mean(), | |
"Spearman's coeff. (E: attraction)": rows[ | |
"spearman-attraction-energy" | |
].mean(), | |
"Spearman's coeff. (F: ascending)": rows[ | |
"spearman-ascending-force" | |
].mean(), | |
"PBE energy MAE [eV]": rows["pbe-energy-mae"].mean(), | |
"PBE force MAE [eV/Å]": rows["pbe-force-mae"].mean(), | |
} | |
table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True) | |
table.set_index("Model", inplace=True) | |
table.sort_values("Conservation deviation [eV/Å]", ascending=True, inplace=True) | |
table["Rank"] = np.argsort(table["Conservation deviation [eV/Å]"].to_numpy()) | |
table.sort_values( | |
"Spearman's coeff. (E: repulsion)", ascending=True, inplace=True | |
) | |
table["Rank"] += np.argsort(table["Spearman's coeff. (E: repulsion)"].to_numpy()) | |
table.sort_values( | |
"Spearman's coeff. (F: descending)", ascending=True, inplace=True | |
) | |
table["Rank"] += np.argsort(table["Spearman's coeff. (F: descending)"].to_numpy()) | |
# NOTE: it's not fair to models trained on different level of theory | |
# table.sort_values("PBE energy MAE [eV]", ascending=True, inplace=True) | |
# table["Rank"] += np.argsort(table["PBE energy MAE [eV]"].to_numpy()) | |
# table.sort_values("PBE force MAE [eV/Å]", ascending=True, inplace=True) | |
# table["Rank"] += np.argsort(table["PBE force MAE [eV/Å]"].to_numpy()) | |
table.sort_values("Tortuosity", ascending=True, inplace=True) | |
table["Rank"] += np.argsort(table["Tortuosity"].to_numpy()) | |
table.sort_values("Energy jump [eV]", ascending=True, inplace=True) | |
table["Rank"] += np.argsort(table["Energy jump [eV]"].to_numpy()) | |
table.sort_values("Force flips", ascending=True, inplace=True) | |
table["Rank"] += np.argsort(np.abs(table["Force flips"].to_numpy() - 1)) | |
table["Rank"] += 1 | |
table.sort_values(["Rank", "Conservation deviation [eV/Å]"], ascending=True, inplace=True) | |
table["Rank aggr."] = table["Rank"] | |
table["Rank"] = table["Rank aggr."].rank(method='min').astype(int) | |
table = table.reindex( | |
columns=[ | |
"Rank", | |
"Rank aggr.", | |
"Conservation deviation [eV/Å]", | |
"PBE energy MAE [eV]", | |
"PBE force MAE [eV/Å]", | |
"Spearman's coeff. (E: repulsion)", | |
"Spearman's coeff. (F: descending)", | |
"Energy jump [eV]", | |
"Force flips", | |
"Tortuosity", | |
"Spearman's coeff. (E: attraction)", | |
"Spearman's coeff. (F: ascending)", | |
] | |
) | |
s = ( | |
table.style.background_gradient( | |
cmap="viridis_r", | |
subset=["Conservation deviation [eV/Å]"], | |
gmap=np.log(table["Conservation deviation [eV/Å]"].to_numpy()), | |
) | |
.background_gradient( | |
cmap="Reds", | |
subset=[ | |
"Spearman's coeff. (E: repulsion)", | |
"Spearman's coeff. (F: descending)", | |
], | |
# vmin=-1, vmax=-0.5 | |
) | |
# .background_gradient( | |
# cmap="Greys", | |
# subset=[ | |
# "PBE energy MAE [eV]", | |
# "PBE force MAE [eV/Å]", | |
# ], | |
# ) | |
.background_gradient( | |
cmap="RdPu", | |
subset=["Tortuosity", "Energy jump [eV]", "Force flips"], | |
) | |
.background_gradient( | |
cmap="Blues", | |
subset=["Rank", "Rank aggr."], | |
) | |
.format( | |
"{:.3f}", | |
subset=[ | |
"Conservation deviation [eV/Å]", | |
"Spearman's coeff. (E: repulsion)", | |
"Spearman's coeff. (F: descending)", | |
"Tortuosity", | |
"Energy jump [eV]", | |
"Force flips", | |
"Spearman's coeff. (E: attraction)", | |
"Spearman's coeff. (F: ascending)", | |
"PBE energy MAE [eV]", | |
"PBE force MAE [eV/Å]", | |
] | |
) | |
) | |
def render(): | |
st.dataframe( | |
s, | |
use_container_width=True, | |
) | |
with st.expander("Explanation", icon=":material/info:"): | |
st.caption( | |
""" | |
- **Conservation deviation**: The average deviation of force from negative energy gradient along the diatomic curves. | |
$$ | |
\\text{Conservation deviation} = \\left\\langle\\left| \\mathbf{F}(\\mathbf{r})\\cdot\\frac{\\mathbf{r}}{\\|\\mathbf{r}\\|} + \\nabla_rE\\right|\\right\\rangle_{r = \\|\\mathbf{r}\\|} | |
$$ | |
- **Spearman's coeff. (E: repulsion)**: Spearman's correlation coefficient of energy prediction within equilibrium distance $r \\in (r_{min}, r_o = \\argmin_{r} E(r))$. | |
- **Spearman's coeff. (F: descending)**: Spearman's correlation coefficient of force prediction within equilibrium distance $r \\in (r_{min}, r_o = \\argmin_{r} E(r))$. | |
- **Tortuosity**: The ratio between total variation in energy and sum of absolute energy differences between $r_{min}$, $r_o$, and $r_{max}$. | |
- **Energy jump**: The sum of energy discontinuity. | |
- **Force flips**: The number of force direction changes. | |
""" | |
) | |