Spaces:
Running
Running
"""Utility functions for MLIP models.""" | |
import torch | |
try: | |
from prefect.logging import get_run_logger | |
logger = get_run_logger() | |
except (ImportError, RuntimeError): | |
from loguru import logger | |
def get_freer_device() -> torch.device: | |
"""Get the GPU with the most free memory, or use MPS if available. | |
s | |
Returns: | |
torch.device: The selected GPU device or MPS. | |
Raises: | |
ValueError: If no GPU or MPS is available. | |
""" | |
device_count = torch.cuda.device_count() | |
if device_count > 0: | |
# If CUDA GPUs are available, select the one with the most free memory | |
mem_free = [ | |
torch.cuda.get_device_properties(i).total_memory | |
- torch.cuda.memory_allocated(i) | |
for i in range(device_count) | |
] | |
free_gpu_index = mem_free.index(max(mem_free)) | |
device = torch.device(f"cuda:{free_gpu_index}") | |
logger.info( | |
f"Selected GPU {device} with {mem_free[free_gpu_index] / 1024**2:.2f} MB free memory from {device_count} GPUs" | |
) | |
elif torch.backends.mps.is_available(): | |
# If no CUDA GPUs are available but MPS is, use MPS | |
logger.info("No GPU available. Using MPS.") | |
device = torch.device("mps") | |
else: | |
# Fallback to CPU if neither CUDA GPUs nor MPS are available | |
logger.info("No GPU or MPS available. Using CPU.") | |
device = torch.device("cpu") | |
return device | |