Spaces:
Running
Running
from pathlib import Path | |
import numpy as np | |
import pandas as pd | |
import plotly.colors as pcolors | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import streamlit as st | |
from mlip_arena.models import REGISTRY as MODELS | |
DATA_DIR = Path("mlip_arena/tasks/combustion") | |
st.markdown(""" | |
# Combustion | |
""") | |
st.markdown("### Methods") | |
container = st.container(border=True) | |
valid_models = [ | |
model | |
for model, metadata in MODELS.items() | |
if Path(__file__).stem in metadata.get("gpu-tasks", []) | |
] | |
models = container.multiselect( | |
"MLIPs", | |
valid_models, | |
[ | |
"MACE-MP(M)", | |
"CHGNet", | |
"M3GNet", | |
"SevenNet", | |
"ORB", | |
"ORBv2", | |
"EquiformerV2(OC20)", | |
"eSCN(OC20)", | |
], | |
) | |
st.markdown("### Settings") | |
vis = st.container(border=True) | |
# Get all attributes from pcolors.qualitative | |
all_attributes = dir(pcolors.qualitative) | |
color_palettes = { | |
attr: getattr(pcolors.qualitative, attr) | |
for attr in all_attributes | |
if isinstance(getattr(pcolors.qualitative, attr), list) | |
} | |
color_palettes.pop("__all__", None) | |
palette_names = list(color_palettes.keys()) | |
palette_colors = list(color_palettes.values()) | |
palette_name = vis.selectbox("Color sequence", options=palette_names, index=22) | |
color_sequence = color_palettes[palette_name] | |
if not models: | |
st.stop() | |
def get_data(models): | |
# List comprehension for concise looping and filtering | |
dfs = [ | |
pd.read_json(DATA_DIR / MODELS[str(model)]["family"].lower() / "hydrogen.json")[lambda df: df["method"] == model] | |
for model in models | |
] | |
# Concatenate all filtered DataFrames | |
return pd.concat(dfs, ignore_index=True) | |
df = get_data(models) | |
method_color_mapping = { | |
method: color_sequence[i % len(color_sequence)] | |
for i, method in enumerate(df["method"].unique()) | |
} | |
### | |
# Number of products | |
fig = go.Figure() | |
for method in df["method"].unique(): | |
row = df[df["method"] == method].iloc[0] | |
fig.add_trace( | |
go.Scatter( | |
x=row["timestep"], | |
y=row["nproducts"], | |
mode="lines", | |
name=method, | |
line=dict(color=method_color_mapping[method]), | |
showlegend=True, | |
), | |
) | |
fig.add_vrect( | |
x0=512345.94, | |
x1=666667, | |
fillcolor="lightblue", | |
opacity=0.2, | |
layer="below", | |
line_width=0, | |
annotation_text="Flame Temp. [1]", | |
annotation_position="top", | |
) | |
fig.update_layout( | |
title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)", | |
xaxis_title="Timestep", | |
yaxis_title="Number of water molecules", | |
) | |
st.plotly_chart(fig) | |
# tempearture | |
fig = go.Figure() | |
for method in df["method"].unique(): | |
row = df[df["method"] == method].iloc[0] | |
fig.add_trace( | |
go.Scatter( | |
x=row["timestep"], | |
y=row["temperatures"], | |
mode="markers", | |
name=method, | |
line=dict( | |
color=method_color_mapping[method], | |
# width=1 | |
), | |
marker=dict(color=method_color_mapping[method], size=3), | |
showlegend=True, | |
), | |
) | |
target_steps = df["target_steps"].iloc[0] | |
fig.add_trace( | |
go.Line( | |
x=[0, target_steps / 3, target_steps / 3 * 2, target_steps], | |
y=[300, 3000, 3000, 300], | |
mode="lines", | |
name="Target", | |
line=dict(dash="dash", color="white"), | |
showlegend=True, | |
), | |
) | |
fig.add_vrect( | |
x0=512345.94, | |
x1=666667, | |
fillcolor="lightblue", | |
opacity=0.2, | |
layer="below", | |
line_width=0, | |
annotation_text="Flame Temp.", | |
annotation_position="top", | |
) | |
fig.update_layout( | |
# title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)", | |
xaxis_title="Timestep", | |
yaxis_title="Temperature (K)", | |
# yaxis2=dict( | |
# title="Product Percentage (%)", | |
# overlaying="y", | |
# side="right", | |
# range=[0, 100], | |
# tickmode="sync", | |
# ), | |
# template="plotly_dark", | |
) | |
st.plotly_chart(fig) | |
# Energy | |
exp_ref = -68.3078 # kcal/mol | |
factor = 23.0609 | |
nh2os = 128 | |
fig = go.Figure() | |
for method in df["method"].unique(): | |
row = df[df["method"] == method].iloc[0] | |
fig.add_trace( | |
go.Scatter( | |
x=row["timestep"], | |
y=(np.array(row["energies"]) - row["energies"][0]) / nh2os * factor, | |
mode="lines", | |
name=method, | |
line=dict( | |
color=method_color_mapping[method], | |
# width=1 | |
), | |
marker=dict(color=method_color_mapping[method], size=3), | |
showlegend=True, | |
), | |
) | |
target_steps = df["target_steps"].iloc[0] | |
fig.add_shape( | |
go.layout.Shape( | |
type="line", | |
x0=0, x1=target_steps, | |
y0=exp_ref, y1=exp_ref, # y-values for the horizontal line | |
line=dict(color="Red", width=2, dash="dash"), | |
layer="below" | |
) | |
) | |
fig.add_annotation( | |
go.layout.Annotation( | |
x=0.5, | |
xref="paper", | |
xanchor="center", | |
y=exp_ref, | |
yanchor="bottom", | |
text=f"Experiment: {exp_ref} kcal/mol [2]", | |
showarrow=False, | |
font=dict( | |
color="Red", | |
), | |
) | |
) | |
fig.add_vrect( | |
x0=512345.94, | |
x1=666667, | |
fillcolor="lightblue", | |
opacity=0.2, | |
layer="below", | |
line_width=0, | |
annotation_text="Flame Temp.", | |
annotation_position="top", | |
) | |
fig.update_layout( | |
xaxis_title="Timestep <br> <span style='font-size: 10px;'>[2] Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). CRC press.</span>", | |
yaxis_title="𝚫E (kcal/mol)", | |
) | |
st.plotly_chart(fig) | |
# Total Energy | |
# fig = go.Figure() | |
# for method in df["method"].unique(): | |
# row = df[df["method"] == method].iloc[0] | |
# fig.add_trace( | |
# go.Scatter( | |
# x=row["timestep"], | |
# y=np.array(row["energies"]) - row["energies"][0] + np.array(row["kinetic_energies"]), | |
# mode="lines", | |
# name=method, | |
# line=dict( | |
# color=method_color_mapping[method], | |
# # width=1 | |
# ), | |
# marker=dict(color=method_color_mapping[method], size=3), | |
# showlegend=True, | |
# ), | |
# ) | |
# fig.update_layout( | |
# # title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)", | |
# xaxis_title="Timestep", | |
# yaxis_title="Total Energy 𝚫 (eV)", | |
# # template="plotly_dark", | |
# ) | |
# st.plotly_chart(fig) | |
# Reaction energy | |
fig = go.Figure() | |
df["reaction_energy"] = df["energies"].apply(lambda x: x[-1] - x[0]) / nh2os * factor # kcal/mol | |
df["reaction_energy_abs_err"] = np.abs(df["reaction_energy"] - exp_ref) | |
df.sort_values("reaction_energy_abs_err", inplace=True) | |
fig.add_traces([ | |
go.Bar( | |
x=df["method"], | |
y=df["reaction_energy"], | |
marker=dict(color=[method_color_mapping[method] for method in df["method"]]), | |
text=[f"{y:.2f}" for y in df["reaction_energy"]], | |
), | |
]) | |
fig.add_shape( | |
go.layout.Shape( | |
type="line", | |
x0=-0.5, x1=len(df["method"]) - 0.5, # range covering the bars | |
y0=exp_ref, y1=exp_ref, # y-values for the horizontal line | |
line=dict(color="Red", width=2, dash="dash"), | |
layer="below" | |
) | |
) | |
fig.add_annotation( | |
go.layout.Annotation( | |
x=0.5, | |
xref="paper", | |
xanchor="center", | |
y=exp_ref, | |
yanchor="bottom", | |
text=f"Experiment: {exp_ref} kcal/mol [2]", | |
showarrow=False, | |
font=dict( | |
color="Red", | |
), | |
) | |
) | |
fig.update_layout( | |
# title="Reaction energy 𝚫H (kcal/mol)", | |
xaxis_title="Method <br> <span style='font-size: 10px;'>[1] Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). CRC press.</span>", | |
yaxis_title="Reaction energy 𝚫H (kcal/mol)", | |
# annotations = [ | |
# dict( | |
# x=0.5, xref="paper", xanchor="center", | |
# y=-0.5, yref="paper", yanchor="bottom", | |
# text="Caption", | |
# ) | |
# ] | |
) | |
st.plotly_chart(fig) | |
# Final reaction rate | |
fig = go.Figure() | |
df = df.sort_values("yield", ascending=True) | |
fig.add_trace( | |
go.Bar( | |
x=df["yield"] * 100, | |
y=df["method"], | |
opacity=0.75, | |
orientation="h", | |
marker=dict(color=[method_color_mapping[method] for method in df["method"]]), | |
text=[f"{y:.2f} %" for y in df["yield"] * 100], | |
) | |
) | |
fig.update_layout( | |
title="Reaction yield (2H2 + O2 -> 2H2O, 64 units)", | |
xaxis_title="Yield (%)", | |
yaxis_title="Method" | |
) | |
st.plotly_chart(fig) | |
# MD runtime speed | |
fig = go.Figure() | |
df = df.sort_values("steps_per_second", ascending=True) | |
fig.add_trace( | |
go.Bar( | |
x=df["steps_per_second"], | |
y=df["method"], | |
opacity=0.75, | |
orientation="h", | |
marker=dict(color=[method_color_mapping[method] for method in df["method"]]), | |
text=df["steps_per_second"].round(1), | |
) | |
) | |
fig.update_layout( | |
title="MD runtime speed (on single A100 GPU)", | |
xaxis_title="Steps per second", | |
yaxis_title="Method", | |
) | |
st.plotly_chart(fig) | |
# COM drift | |
st.markdown("""### Center of mass drift | |
The center of mass (COM) drift is a measure of the stability of the simulation. A well-behaved simulation should have a COM drift close to zero. The COM drift is calculated as the displacement of the COM of the system from the initial position. | |
""") | |
def get_com_drifts(df): | |
df_exploded = df.explode(["timestep", "com_drifts"]).reset_index(drop=True) | |
# Convert the 'com_drifts' column (which are arrays) into separate columns for x, y, and z components | |
df_exploded[["com_drift_x", "com_drift_y", "com_drift_z"]] = pd.DataFrame( | |
df_exploded["com_drifts"].tolist(), index=df_exploded.index | |
) | |
# Drop the original 'com_drifts' column | |
df_flat = df_exploded.drop(columns=["com_drifts"]) | |
df_flat["total_com_drift"] = np.sqrt( | |
df_flat["com_drift_x"] ** 2 | |
+ df_flat["com_drift_y"] ** 2 | |
+ df_flat["com_drift_z"] ** 2 | |
) | |
return df_flat | |
df_exploded = get_com_drifts(df) | |
fig = go.Figure() | |
for method in df_exploded["method"].unique(): | |
row = df_exploded[df_exploded["method"] == method] | |
fig.add_trace( | |
go.Scatter( | |
x=row["timestep"], | |
y=row["total_com_drift"], | |
mode="lines", | |
name=method, | |
line=dict( | |
color=method_color_mapping[method], | |
# width=1 | |
), | |
marker=dict(color=method_color_mapping[method], size=3), | |
showlegend=True, | |
), | |
) | |
fig.update_yaxes(type="log") | |
fig.update_layout( | |
xaxis_title="Timestep", | |
yaxis_title="Total COM drift (Å)", | |
) | |
st.plotly_chart(fig) | |
if "play" not in st.session_state: | |
st.session_state.play = False | |
def toggle_playing(): | |
st.session_state.play = not st.session_state.play | |
# st.button( | |
# "Play" if not st.session_state.play else "Pause", | |
# type="primary" if not st.session_state.play else "secondary", | |
# on_click=toggle_playing, | |
# ) | |
increment = df["target_steps"].max() // 200 | |
if "time_range" not in st.session_state: | |
st.session_state.time_range = (0, increment) | |
# @st.experimental_fragment(run_every=1e-3 if st.session_state.play else None) | |
def draw_com_drifts_plot(): | |
if st.session_state.play: | |
start, end = st.session_state.time_range | |
end += increment | |
if end > df["target_steps"].max(): | |
start = 0 | |
end = 0 | |
st.session_state.time_range = (start, end) | |
start_timestep, end_timestep = st.slider( | |
"Timestep", | |
min_value=0, | |
max_value=df["target_steps"].max(), | |
value=st.session_state.time_range, | |
key="time_range", | |
# on_change=check_range, | |
) | |
mask = (df_exploded["timestep"] >= start_timestep) & ( | |
df_exploded["timestep"] <= end_timestep | |
) | |
df_filtered = df_exploded[mask] | |
df_filtered.sort_values(["method", "timestep"], inplace=True) | |
fig = px.line_3d( | |
data_frame=df_filtered, | |
x="com_drift_x", | |
y="com_drift_y", | |
z="com_drift_z", | |
labels={ | |
"com_drift_x": "𝚫x (Å)", | |
"com_drift_y": "𝚫y (Å)", | |
"com_drift_z": "𝚫z (Å)", | |
}, | |
category_orders={"method": df_exploded["method"].unique()}, | |
color_discrete_sequence=[ | |
method_color_mapping[method] for method in df_exploded["method"].unique() | |
], | |
color="method", | |
width=800, | |
height=800, | |
) | |
fig.update_layout( | |
scene=dict( | |
aspectmode="cube", | |
), | |
legend=dict( | |
orientation="v", | |
x=0.95, | |
xanchor="right", | |
y=1, | |
yanchor="top", | |
bgcolor="rgba(0, 0, 0, 0)", | |
), | |
) | |
fig.add_traces( | |
[ | |
go.Scatter3d( | |
x=[0], | |
y=[0], | |
z=[0], | |
mode="markers", | |
marker=dict(size=3, color="white"), | |
name="origin", | |
), | |
# add last point of each method and annotate the total drift | |
go.Scatter3d( | |
# df_filtered.groupby("method")["com_drift_x"].last(), | |
x=df_filtered.groupby("method")["com_drift_x"].last(), | |
y=df_filtered.groupby("method")["com_drift_y"].last(), | |
z=df_filtered.groupby("method")["com_drift_z"].last(), | |
mode="markers+text", | |
marker=dict(size=3, color="white", opacity=0.5), | |
text=df_filtered.groupby("method")["total_com_drift"].last().round(3), | |
# size=5, | |
name="total drifts", | |
textposition="top center", | |
), | |
] | |
) | |
st.plotly_chart(fig) | |
draw_com_drifts_plot() | |
st.markdown(""" | |
### References | |
[1] Hasche, A., Navid, A., Krause, H., & Eckart, S. (2023). Experimental and numerical assessment of the effects of hydrogen admixtures on premixed methane-oxygen flames. Fuel, 352, 128964. | |
[2] Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). CRC press. | |
""" | |
) |