cyrusyc commited on
Commit
c1d2139
·
1 Parent(s): fff5e51

comment out unsupported models from registry

Browse files
mlip_arena/models/registry.yaml CHANGED
@@ -290,40 +290,40 @@ ORBv2:
290
  npt: true
291
  license: Apache-2.0
292
 
293
- ORBv2(MPTrj):
294
- module: externals
295
- class: ORBv2
296
- family: orb
297
- package:
298
- checkpoint: orb-mptraj-only-v2-20241014.ckpt
299
- username:
300
- last-update: 2024-10-29T00:00:00
301
- datetime: 2024-10-29T00:00:00 # TODO: Fake datetime
302
- datasets:
303
- - MPTrj
304
- github: https://github.com/orbital-materials/orb-models
305
- doi:
306
- date: 2024-10-15
307
- prediction: EFS
308
- nvt: true
309
- npt: true
310
- license: Apache-2.0
311
 
312
- eqV2(MPTrj-S):
313
- module: externals
314
- class: eqV2
315
- family: fairchem
316
- package: fairchem-core==1.2.0
317
- checkpoint: eqV2_31M_mp.pt
318
- username: fairchem # HF handle
319
- last-update: 2024-10-29T00:00:00
320
- datetime: 2024-10-29T00:00:00
321
- datasets:
322
- - MPTrj
323
- prediction: EFS
324
- nvt: true
325
- npt: true
326
- date: 2024-10-18
327
- github: https://github.com/FAIR-Chem/fairchem
328
- doi: https://arxiv.org/abs/2410.12771
329
- license: Modified Apache-2.0 (Meta)
 
290
  npt: true
291
  license: Apache-2.0
292
 
293
+ # ORBv2(MPTrj):
294
+ # module: externals
295
+ # class: ORBv2
296
+ # family: orb
297
+ # package:
298
+ # checkpoint: orb-mptraj-only-v2-20241014.ckpt
299
+ # username:
300
+ # last-update: 2024-10-29T00:00:00
301
+ # datetime: 2024-10-29T00:00:00 # TODO: Fake datetime
302
+ # datasets:
303
+ # - MPTrj
304
+ # github: https://github.com/orbital-materials/orb-models
305
+ # doi:
306
+ # date: 2024-10-15
307
+ # prediction: EFS
308
+ # nvt: true
309
+ # npt: true
310
+ # license: Apache-2.0
311
 
312
+ # eqV2(MPTrj-S):
313
+ # module: externals
314
+ # class: eqV2
315
+ # family: fairchem
316
+ # package: fairchem-core==1.2.0
317
+ # checkpoint: eqV2_31M_mp.pt
318
+ # username: fairchem # HF handle
319
+ # last-update: 2024-10-29T00:00:00
320
+ # datetime: 2024-10-29T00:00:00
321
+ # datasets:
322
+ # - MPTrj
323
+ # prediction: EFS
324
+ # nvt: true
325
+ # npt: true
326
+ # date: 2024-10-18
327
+ # github: https://github.com/FAIR-Chem/fairchem
328
+ # doi: https://arxiv.org/abs/2410.12771
329
+ # license: Modified Apache-2.0 (Meta)
mlip_arena/tasks/combustion/water.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
@@ -18,18 +18,18 @@
18
  "from pymatgen.core import Molecule\n",
19
  "from pymatgen.io.packmol import PackmolBoxGen\n",
20
  "\n",
21
- "from mlip_arena.models.utils import REGISTRY, MLIPEnum\n",
 
22
  "from mlip_arena.tasks.md import run as MD"
23
  ]
24
  },
25
  {
26
  "cell_type": "markdown",
27
  "metadata": {
28
- "jp-MarkdownHeadingCollapsed": true,
29
  "tags": []
30
  },
31
  "source": [
32
- "## Create initial configuration"
33
  ]
34
  },
35
  {
@@ -124,7 +124,7 @@
124
  },
125
  {
126
  "cell_type": "code",
127
- "execution_count": 2,
128
  "metadata": {
129
  "tags": []
130
  },
@@ -144,9 +144,19 @@
144
  },
145
  {
146
  "cell_type": "code",
147
- "execution_count": 3,
148
  "metadata": {},
149
  "outputs": [
 
 
 
 
 
 
 
 
 
 
150
  {
151
  "name": "stdout",
152
  "output_type": "stream",
@@ -155,29 +165,19 @@
155
  "\n",
156
  "#SBATCH -A matgen\n",
157
  "#SBATCH --mem=0\n",
158
- "#SBATCH -t 00:30:00\n",
 
 
159
  "#SBATCH -N 1\n",
160
- "#SBATCH -q debug\n",
161
  "#SBATCH -C gpu\n",
162
- "#SBATCH -J combustion-water\n",
 
163
  "source ~/.bashrc\n",
164
  "module load python\n",
165
  "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\n",
166
- "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/bin/python -m distributed.cli.dask_worker tcp://128.55.64.19:39737 --name dummy-name --nthreads 1 --memory-limit 59.60GiB --nanny --death-timeout 60\n",
167
  "\n"
168
  ]
169
- },
170
- {
171
- "name": "stderr",
172
- "output_type": "stream",
173
- "text": [
174
- "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/node.py:182: UserWarning: Port 8787 is already in use.\n",
175
- "Perhaps you already have a cluster running?\n",
176
- "Hosting the HTTP server on port 38693 instead\n",
177
- " warnings.warn(\n",
178
- "2024-10-08 03:30:05,696 - distributed.scheduler - ERROR - Task run-b8e0881eb1e8959f855ada9515884ada marked as failed because 4 workers died while trying to run it\n",
179
- "2024-10-08 03:30:05,723 - distributed.scheduler - ERROR - Task run-3307095fc41590db704148cc499bad14 marked as failed because 4 workers died while trying to run it\n"
180
- ]
181
  }
182
  ],
183
  "source": [
@@ -185,54 +185,49 @@
185
  "gpus_per_alloc = 4\n",
186
  "ntasks = 1\n",
187
  "\n",
188
- "# cluster_kwargs = dict(\n",
189
- "# cores=1,\n",
190
- "# memory=\"64 GB\",\n",
191
- "# shebang=\"#!/bin/bash\",\n",
192
- "# account=\"matgen\",\n",
193
- "# walltime=\"02:00:00\",\n",
194
- "# job_mem=\"0\",\n",
195
- "# job_script_prologue=[\n",
196
- "# \"source ~/.bashrc\",\n",
197
- "# \"module load python\",\n",
198
- "# \"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\",\n",
199
- "# ],\n",
200
- "# job_directives_skip=[\"-n\", \"--cpus-per-task\", \"-J\"],\n",
201
- "# job_extra_directives=[\n",
202
- "# \"-J combustion-water\",\n",
203
- "# \"-q regular\",\n",
204
- "# f\"-N {nodes_per_alloc}\",\n",
205
- "# \"-C gpu\",\n",
206
- "# f\"-G {gpus_per_alloc}\",\n",
207
- "# f\"--exclusive\",\n",
208
- "# # \"--time-min=00:30:00\",\n",
209
- "# # \"--comment=1-00:00:00\",\n",
210
- "# # \"--signal=B:USR1@60\",\n",
211
- "# # \"--requeue\",\n",
212
- "# # \"--open-mode=append\"\n",
213
- "# ],\n",
214
- "# death_timeout=86400\n",
215
- "# )\n",
216
- "\n",
217
- "# cluster = SLURMCluster(**cluster_kwargs)\n",
218
- "\n",
219
- "cluster_kwargs = {\n",
220
- " \"cores\": 1,\n",
221
- " \"memory\": \"64 GB\",\n",
222
- " \"shebang\": \"#!/bin/bash\",\n",
223
- " \"account\": \"matgen\",\n",
224
- " \"walltime\": \"00:30:00\",\n",
225
- " \"job_mem\": \"0\",\n",
226
- " \"job_script_prologue\": [\n",
227
  " \"source ~/.bashrc\",\n",
228
  " \"module load python\",\n",
229
  " \"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\",\n",
230
  " ],\n",
231
- " \"job_directives_skip\": [\"-n\", \"--cpus-per-task\", \"-J\"],\n",
232
- " \"job_extra_directives\": [f\"-N {nodes_per_alloc}\", \"-q debug\", \"-C gpu\", \"-J combustion-water\"],\n",
233
- "}\n",
 
 
 
 
 
 
 
 
 
234
  "cluster = SLURMCluster(**cluster_kwargs)\n",
235
  "\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
  "print(cluster.job_script())\n",
237
  "cluster.adapt(minimum_jobs=2, maximum_jobs=2)\n",
238
  "client = Client(cluster)"
@@ -240,7 +235,7 @@
240
  },
241
  {
242
  "cell_type": "code",
243
- "execution_count": 4,
244
  "metadata": {},
245
  "outputs": [],
246
  "source": [
@@ -274,153 +269,11 @@
274
  },
275
  {
276
  "cell_type": "code",
277
- "execution_count": 5,
278
  "metadata": {
279
  "tags": []
280
  },
281
- "outputs": [
282
- {
283
- "data": {
284
- "text/html": [
285
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">01:25:41.097 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.engine - Created flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'green-turaco'</span> for flow<span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\"> 'combustion'</span>\n",
286
- "</pre>\n"
287
- ],
288
- "text/plain": [
289
- "01:25:41.097 | \u001b[36mINFO\u001b[0m | prefect.engine - Created flow run\u001b[35m 'green-turaco'\u001b[0m for flow\u001b[1;35m 'combustion'\u001b[0m\n"
290
- ]
291
- },
292
- "metadata": {},
293
- "output_type": "display_data"
294
- },
295
- {
296
- "data": {
297
- "text/html": [
298
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">01:25:41.101 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.engine - View at <span style=\"color: #0000ff; text-decoration-color: #0000ff\">https://app.prefect.cloud/account/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspace/d4bb0913-5f5e-49f7-bfc5-06509088baeb/runs/flow-run/784dc0e0-9f4f-4320-8bfa-4c5e8d3b35fb</span>\n",
299
- "</pre>\n"
300
- ],
301
- "text/plain": [
302
- "01:25:41.101 | \u001b[36mINFO\u001b[0m | prefect.engine - View at \u001b[94mhttps://app.prefect.cloud/account/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspace/d4bb0913-5f5e-49f7-bfc5-06509088baeb/runs/flow-run/784dc0e0-9f4f-4320-8bfa-4c5e8d3b35fb\u001b[0m\n"
303
- ]
304
- },
305
- "metadata": {},
306
- "output_type": "display_data"
307
- },
308
- {
309
- "data": {
310
- "text/html": [
311
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">01:25:41.409 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.task_runner.dask - Connecting to existing Dask cluster SLURMCluster(91d5c261, 'tcp://128.55.64.19:39737', workers=0, threads=0, memory=0 B)\n",
312
- "</pre>\n"
313
- ],
314
- "text/plain": [
315
- "01:25:41.409 | \u001b[36mINFO\u001b[0m | prefect.task_runner.dask - Connecting to existing Dask cluster SLURMCluster(91d5c261, 'tcp://128.55.64.19:39737', workers=0, threads=0, memory=0 B)\n"
316
- ]
317
- },
318
- "metadata": {},
319
- "output_type": "display_data"
320
- },
321
- {
322
- "data": {
323
- "text/html": [
324
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">03:30:05.739 | <span style=\"color: #d70000; text-decoration-color: #d70000\">ERROR</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'green-turaco'</span> - Encountered exception during execution: KilledWorker('run-3307095fc41590db704148cc499bad14', &lt;WorkerState 'tcp://128.55.65.2:37007', name: SLURMCluster-1, status: closed, memory: 0, processing: 0&gt;, 3)\n",
325
- "Traceback (most recent call last):\n",
326
- " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 652, in run_context\n",
327
- " yield self\n",
328
- " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 696, in run_flow_sync\n",
329
- " engine.call_flow_fn()\n",
330
- " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 675, in call_flow_fn\n",
331
- " result = call_with_parameters(self.flow.fn, self.parameters)\n",
332
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
333
- " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py\", line 206, in call_with_parameters\n",
334
- " return fn(*args, **kwargs)\n",
335
- " ^^^^^^^^^^^^^^^^^^^\n",
336
- " File \"/tmp/ipykernel_892374/2043615938.py\", line 26, in combustion\n",
337
- " return [future.result() for future in futures]\n",
338
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
339
- " File \"/tmp/ipykernel_892374/2043615938.py\", line 26, in &lt;listcomp&gt;\n",
340
- " return [future.result() for future in futures]\n",
341
- " ^^^^^^^^^^^^^^^\n",
342
- " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect_dask/task_runners.py\", line 132, in result\n",
343
- " future_result = self._wrapped_future.result(timeout=timeout)\n",
344
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
345
- " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/client.py\", line 328, in result\n",
346
- " return self.client.sync(self._result, callback_timeout=timeout)\n",
347
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
348
- " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/client.py\", line 336, in _result\n",
349
- " raise exc.with_traceback(tb)\n",
350
- "distributed.scheduler.KilledWorker: Attempted to run task 'run-3307095fc41590db704148cc499bad14' on 4 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://128.55.65.2:37007. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see <span style=\"color: #0000ff; text-decoration-color: #0000ff\">https://distributed.dask.org/en/stable/killed.html.</span>\n",
351
- "</pre>\n"
352
- ],
353
- "text/plain": [
354
- "03:30:05.739 | \u001b[38;5;160mERROR\u001b[0m | Flow run\u001b[35m 'green-turaco'\u001b[0m - Encountered exception during execution: KilledWorker('run-3307095fc41590db704148cc499bad14', <WorkerState 'tcp://128.55.65.2:37007', name: SLURMCluster-1, status: closed, memory: 0, processing: 0>, 3)\n",
355
- "Traceback (most recent call last):\n",
356
- " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 652, in run_context\n",
357
- " yield self\n",
358
- " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 696, in run_flow_sync\n",
359
- " engine.call_flow_fn()\n",
360
- " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 675, in call_flow_fn\n",
361
- " result = call_with_parameters(self.flow.fn, self.parameters)\n",
362
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
363
- " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py\", line 206, in call_with_parameters\n",
364
- " return fn(*args, **kwargs)\n",
365
- " ^^^^^^^^^^^^^^^^^^^\n",
366
- " File \"/tmp/ipykernel_892374/2043615938.py\", line 26, in combustion\n",
367
- " return [future.result() for future in futures]\n",
368
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
369
- " File \"/tmp/ipykernel_892374/2043615938.py\", line 26, in <listcomp>\n",
370
- " return [future.result() for future in futures]\n",
371
- " ^^^^^^^^^^^^^^^\n",
372
- " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect_dask/task_runners.py\", line 132, in result\n",
373
- " future_result = self._wrapped_future.result(timeout=timeout)\n",
374
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
375
- " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/client.py\", line 328, in result\n",
376
- " return self.client.sync(self._result, callback_timeout=timeout)\n",
377
- " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
378
- " File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/client.py\", line 336, in _result\n",
379
- " raise exc.with_traceback(tb)\n",
380
- "distributed.scheduler.KilledWorker: Attempted to run task 'run-3307095fc41590db704148cc499bad14' on 4 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://128.55.65.2:37007. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see \u001b[94mhttps://distributed.dask.org/en/stable/killed.html.\u001b[0m\n"
381
- ]
382
- },
383
- "metadata": {},
384
- "output_type": "display_data"
385
- },
386
- {
387
- "data": {
388
- "text/html": [
389
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">03:30:06.504 | <span style=\"color: #d70000; text-decoration-color: #d70000\">ERROR</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'green-turaco'</span> - Finished in state <span style=\"color: #d70000; text-decoration-color: #d70000\">Failed</span>(\"Flow run encountered an exception: KilledWorker: Attempted to run task 'run-3307095fc41590db704148cc499bad14' on 4 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://128.55.65.2:37007. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see <span style=\"color: #0000ff; text-decoration-color: #0000ff\">https://distributed.dask.org/en/stable/killed.html.</span>\")\n",
390
- "</pre>\n"
391
- ],
392
- "text/plain": [
393
- "03:30:06.504 | \u001b[38;5;160mERROR\u001b[0m | Flow run\u001b[35m 'green-turaco'\u001b[0m - Finished in state \u001b[38;5;160mFailed\u001b[0m(\"Flow run encountered an exception: KilledWorker: Attempted to run task 'run-3307095fc41590db704148cc499bad14' on 4 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://128.55.65.2:37007. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see \u001b[94mhttps://distributed.dask.org/en/stable/killed.html.\u001b[0m\")\n"
394
- ]
395
- },
396
- "metadata": {},
397
- "output_type": "display_data"
398
- },
399
- {
400
- "ename": "KilledWorker",
401
- "evalue": "Attempted to run task 'run-3307095fc41590db704148cc499bad14' on 4 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://128.55.65.2:37007. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see https://distributed.dask.org/en/stable/killed.html.",
402
- "output_type": "error",
403
- "traceback": [
404
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
405
- "\u001b[0;31mKilledWorker\u001b[0m Traceback (most recent call last)",
406
- "Cell \u001b[0;32mIn[5], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mcombustion\u001b[49m\u001b[43m(\u001b[49m\u001b[43matoms\u001b[49m\u001b[43m)\u001b[49m\n",
407
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flows.py:1345\u001b[0m, in \u001b[0;36mFlow.__call__\u001b[0;34m(self, return_state, wait_for, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1341\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m track_viz_task(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39misasync, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname, parameters)\n\u001b[1;32m 1343\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mprefect\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mflow_engine\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m run_flow\n\u001b[0;32m-> 1345\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun_flow\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1346\u001b[0m \u001b[43m \u001b[49m\u001b[43mflow\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1347\u001b[0m \u001b[43m \u001b[49m\u001b[43mparameters\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparameters\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1348\u001b[0m \u001b[43m \u001b[49m\u001b[43mwait_for\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwait_for\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1349\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1350\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
408
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:818\u001b[0m, in \u001b[0;36mrun_flow\u001b[0;34m(flow, flow_run, parameters, wait_for, return_type)\u001b[0m\n\u001b[1;32m 816\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m run_flow_async(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 817\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 818\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun_flow_sync\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
409
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:698\u001b[0m, in \u001b[0;36mrun_flow_sync\u001b[0;34m(flow, flow_run, parameters, wait_for, return_type)\u001b[0m\n\u001b[1;32m 695\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mrun_context():\n\u001b[1;32m 696\u001b[0m engine\u001b[38;5;241m.\u001b[39mcall_flow_fn()\n\u001b[0;32m--> 698\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mstate \u001b[38;5;28;01mif\u001b[39;00m return_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstate\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m \u001b[43mengine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
410
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:255\u001b[0m, in \u001b[0;36mFlowRunEngine.result\u001b[0;34m(self, raise_on_failure)\u001b[0m\n\u001b[1;32m 253\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raised \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m NotSet:\n\u001b[1;32m 254\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m raise_on_failure:\n\u001b[0;32m--> 255\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raised\n\u001b[1;32m 256\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raised\n\u001b[1;32m 258\u001b[0m \u001b[38;5;66;03m# This is a fall through case which leans on the existing state result mechanics to get the\u001b[39;00m\n\u001b[1;32m 259\u001b[0m \u001b[38;5;66;03m# return value. This is necessary because we currently will return a State object if the\u001b[39;00m\n\u001b[1;32m 260\u001b[0m \u001b[38;5;66;03m# the State was Prefect-created.\u001b[39;00m\n\u001b[1;32m 261\u001b[0m \u001b[38;5;66;03m# TODO: Remove the need to get the result from a State except in cases where the return value\u001b[39;00m\n\u001b[1;32m 262\u001b[0m \u001b[38;5;66;03m# is a State object.\u001b[39;00m\n",
411
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:652\u001b[0m, in \u001b[0;36mFlowRunEngine.run_context\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 645\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m timeout_context(\n\u001b[1;32m 646\u001b[0m seconds\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow\u001b[38;5;241m.\u001b[39mtimeout_seconds,\n\u001b[1;32m 647\u001b[0m timeout_exc_type\u001b[38;5;241m=\u001b[39mFlowRunTimeoutError,\n\u001b[1;32m 648\u001b[0m ):\n\u001b[1;32m 649\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlogger\u001b[38;5;241m.\u001b[39mdebug(\n\u001b[1;32m 650\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExecuting flow \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m for flow run \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow_run\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m...\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 651\u001b[0m )\n\u001b[0;32m--> 652\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m \u001b[38;5;28mself\u001b[39m\n\u001b[1;32m 653\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTimeoutError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 654\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_timeout(exc)\n",
412
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:696\u001b[0m, in \u001b[0;36mrun_flow_sync\u001b[0;34m(flow, flow_run, parameters, wait_for, return_type)\u001b[0m\n\u001b[1;32m 694\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mis_running():\n\u001b[1;32m 695\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mrun_context():\n\u001b[0;32m--> 696\u001b[0m \u001b[43mengine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_flow_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 698\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mstate \u001b[38;5;28;01mif\u001b[39;00m return_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstate\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mresult()\n",
413
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:675\u001b[0m, in \u001b[0;36mFlowRunEngine.call_flow_fn\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 673\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _call_flow_fn()\n\u001b[1;32m 674\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 675\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mcall_with_parameters\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mflow\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparameters\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 676\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_success(result)\n",
414
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py:206\u001b[0m, in \u001b[0;36mcall_with_parameters\u001b[0;34m(fn, parameters)\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 199\u001b[0m \u001b[38;5;124;03mCall a function with parameters extracted with `get_call_parameters`\u001b[39;00m\n\u001b[1;32m 200\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 203\u001b[0m \u001b[38;5;124;03mthe args/kwargs using `parameters_to_positional_and_keyword` directly\u001b[39;00m\n\u001b[1;32m 204\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 205\u001b[0m args, kwargs \u001b[38;5;241m=\u001b[39m parameters_to_args_kwargs(fn, parameters)\n\u001b[0;32m--> 206\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
415
- "Cell \u001b[0;32mIn[4], line 26\u001b[0m, in \u001b[0;36mcombustion\u001b[0;34m(atoms)\u001b[0m\n\u001b[1;32m 6\u001b[0m future \u001b[38;5;241m=\u001b[39m MD\u001b[38;5;241m.\u001b[39msubmit(\n\u001b[1;32m 7\u001b[0m atoms\u001b[38;5;241m=\u001b[39matoms,\n\u001b[1;32m 8\u001b[0m calculator_name\u001b[38;5;241m=\u001b[39mmodel,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 21\u001b[0m restart\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 22\u001b[0m )\n\u001b[1;32m 24\u001b[0m futures\u001b[38;5;241m.\u001b[39mappend(future)\n\u001b[0;32m---> 26\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m[\u001b[49m\u001b[43mfuture\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mfuture\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mfutures\u001b[49m\u001b[43m]\u001b[49m\n",
416
- "Cell \u001b[0;32mIn[4], line 26\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 6\u001b[0m future \u001b[38;5;241m=\u001b[39m MD\u001b[38;5;241m.\u001b[39msubmit(\n\u001b[1;32m 7\u001b[0m atoms\u001b[38;5;241m=\u001b[39matoms,\n\u001b[1;32m 8\u001b[0m calculator_name\u001b[38;5;241m=\u001b[39mmodel,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 21\u001b[0m restart\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 22\u001b[0m )\n\u001b[1;32m 24\u001b[0m futures\u001b[38;5;241m.\u001b[39mappend(future)\n\u001b[0;32m---> 26\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m [\u001b[43mfuture\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m future \u001b[38;5;129;01min\u001b[39;00m futures]\n",
417
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect_dask/task_runners.py:132\u001b[0m, in \u001b[0;36mPrefectDaskFuture.result\u001b[0;34m(self, timeout, raise_on_failure)\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_final_state:\n\u001b[1;32m 131\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 132\u001b[0m future_result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_wrapped_future\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 133\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m distributed\u001b[38;5;241m.\u001b[39mTimeoutError \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 134\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTimeoutError\u001b[39;00m(\n\u001b[1;32m 135\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTask run \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtask_run_id\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m did not complete within \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtimeout\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m seconds\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 136\u001b[0m ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mexc\u001b[39;00m\n",
418
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/client.py:328\u001b[0m, in \u001b[0;36mFuture.result\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_verify_initialized()\n\u001b[1;32m 327\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m shorten_traceback():\n\u001b[0;32m--> 328\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msync\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_result\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallback_timeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n",
419
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/client.py:336\u001b[0m, in \u001b[0;36mFuture._result\u001b[0;34m(self, raiseit)\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m raiseit:\n\u001b[1;32m 335\u001b[0m typ, exc, tb \u001b[38;5;241m=\u001b[39m exc\n\u001b[0;32m--> 336\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\u001b[38;5;241m.\u001b[39mwith_traceback(tb)\n\u001b[1;32m 337\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 338\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m exc\n",
420
- "\u001b[0;31mKilledWorker\u001b[0m: Attempted to run task 'run-3307095fc41590db704148cc499bad14' on 4 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://128.55.65.2:37007. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see https://distributed.dask.org/en/stable/killed.html."
421
- ]
422
- }
423
- ],
424
  "source": [
425
  "results = combustion(atoms)"
426
  ]
@@ -430,7 +283,9 @@
430
  "execution_count": null,
431
  "metadata": {},
432
  "outputs": [],
433
- "source": []
 
 
434
  }
435
  ],
436
  "metadata": {
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": null,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
18
  "from pymatgen.core import Molecule\n",
19
  "from pymatgen.io.packmol import PackmolBoxGen\n",
20
  "\n",
21
+ "from mlip_arena.models import REGISTRY, MLIPEnum\n",
22
+ "\n",
23
  "from mlip_arena.tasks.md import run as MD"
24
  ]
25
  },
26
  {
27
  "cell_type": "markdown",
28
  "metadata": {
 
29
  "tags": []
30
  },
31
  "source": [
32
+ "# Intial configuration"
33
  ]
34
  },
35
  {
 
124
  },
125
  {
126
  "cell_type": "code",
127
+ "execution_count": 4,
128
  "metadata": {
129
  "tags": []
130
  },
 
144
  },
145
  {
146
  "cell_type": "code",
147
+ "execution_count": 5,
148
  "metadata": {},
149
  "outputs": [
150
+ {
151
+ "name": "stderr",
152
+ "output_type": "stream",
153
+ "text": [
154
+ "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/node.py:182: UserWarning: Port 8787 is already in use.\n",
155
+ "Perhaps you already have a cluster running?\n",
156
+ "Hosting the HTTP server on port 38185 instead\n",
157
+ " warnings.warn(\n"
158
+ ]
159
+ },
160
  {
161
  "name": "stdout",
162
  "output_type": "stream",
 
165
  "\n",
166
  "#SBATCH -A matgen\n",
167
  "#SBATCH --mem=0\n",
168
+ "#SBATCH -t 02:00:00\n",
169
+ "#SBATCH -J combustion-water\n",
170
+ "#SBATCH -q regular\n",
171
  "#SBATCH -N 1\n",
 
172
  "#SBATCH -C gpu\n",
173
+ "#SBATCH -G 4\n",
174
+ "#SBATCH --exclusive\n",
175
  "source ~/.bashrc\n",
176
  "module load python\n",
177
  "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\n",
178
+ "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/bin/python -m distributed.cli.dask_worker tcp://128.55.64.23:40945 --name dummy-name --nthreads 1 --memory-limit 59.60GiB --nanny --death-timeout 86400\n",
179
  "\n"
180
  ]
 
 
 
 
 
 
 
 
 
 
 
 
181
  }
182
  ],
183
  "source": [
 
185
  "gpus_per_alloc = 4\n",
186
  "ntasks = 1\n",
187
  "\n",
188
+ "cluster_kwargs = dict(\n",
189
+ " cores=1,\n",
190
+ " memory=\"64 GB\",\n",
191
+ " shebang=\"#!/bin/bash\",\n",
192
+ " account=\"matgen\",\n",
193
+ " walltime=\"02:00:00\",\n",
194
+ " job_mem=\"0\",\n",
195
+ " job_script_prologue=[\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
  " \"source ~/.bashrc\",\n",
197
  " \"module load python\",\n",
198
  " \"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\",\n",
199
  " ],\n",
200
+ " job_directives_skip=[\"-n\", \"--cpus-per-task\", \"-J\"],\n",
201
+ " job_extra_directives=[\n",
202
+ " \"-J combustion-water\",\n",
203
+ " \"-q regular\",\n",
204
+ " f\"-N {nodes_per_alloc}\",\n",
205
+ " \"-C gpu\",\n",
206
+ " f\"-G {gpus_per_alloc}\",\n",
207
+ " f\"--exclusive\",\n",
208
+ " ],\n",
209
+ " death_timeout=86400\n",
210
+ ")\n",
211
+ "\n",
212
  "cluster = SLURMCluster(**cluster_kwargs)\n",
213
  "\n",
214
+ "# cluster_kwargs = {\n",
215
+ "# \"cores\": 1,\n",
216
+ "# \"memory\": \"64 GB\",\n",
217
+ "# \"shebang\": \"#!/bin/bash\",\n",
218
+ "# \"account\": \"matgen\",\n",
219
+ "# \"walltime\": \"00:30:00\",\n",
220
+ "# \"job_mem\": \"0\",\n",
221
+ "# \"job_script_prologue\": [\n",
222
+ "# \"source ~/.bashrc\",\n",
223
+ "# \"module load python\",\n",
224
+ "# \"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\",\n",
225
+ "# ],\n",
226
+ "# \"job_directives_skip\": [\"-n\", \"--cpus-per-task\", \"-J\"],\n",
227
+ "# \"job_extra_directives\": [f\"-N {nodes_per_alloc}\", \"-q debug\", \"-C gpu\", \"-J combustion-water\"],\n",
228
+ "# }\n",
229
+ "# cluster = SLURMCluster(**cluster_kwargs)\n",
230
+ "\n",
231
  "print(cluster.job_script())\n",
232
  "cluster.adapt(minimum_jobs=2, maximum_jobs=2)\n",
233
  "client = Client(cluster)"
 
235
  },
236
  {
237
  "cell_type": "code",
238
+ "execution_count": null,
239
  "metadata": {},
240
  "outputs": [],
241
  "source": [
 
269
  },
270
  {
271
  "cell_type": "code",
272
+ "execution_count": null,
273
  "metadata": {
274
  "tags": []
275
  },
276
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277
  "source": [
278
  "results = combustion(atoms)"
279
  ]
 
283
  "execution_count": null,
284
  "metadata": {},
285
  "outputs": [],
286
+ "source": [
287
+ "mlip_arena"
288
+ ]
289
  }
290
  ],
291
  "metadata": {