Spaces:
Running
Running
add cache for stability page
Browse files- mlip_arena/models/registry.yaml +1 -0
- serve/tasks/stability.py +115 -100
mlip_arena/models/registry.yaml
CHANGED
@@ -108,6 +108,7 @@ SevenNet:
|
|
108 |
- qmof
|
109 |
gpu-tasks:
|
110 |
- homonuclear-diatomics
|
|
|
111 |
- combustion
|
112 |
github: https://github.com/MDIL-SNU/SevenNet
|
113 |
doi: https://doi.org/10.1021/acs.jctc.4c00190
|
|
|
108 |
- qmof
|
109 |
gpu-tasks:
|
110 |
- homonuclear-diatomics
|
111 |
+
- stability
|
112 |
- combustion
|
113 |
github: https://github.com/MDIL-SNU/SevenNet
|
114 |
doi: https://doi.org/10.1021/acs.jctc.4c00190
|
serve/tasks/stability.py
CHANGED
@@ -53,14 +53,21 @@ color_sequence = color_palettes[palette_name]
|
|
53 |
if not models:
|
54 |
st.stop()
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
method_color_mapping = {
|
66 |
method: color_sequence[i % len(color_sequence)]
|
@@ -69,8 +76,6 @@ method_color_mapping = {
|
|
69 |
|
70 |
###
|
71 |
|
72 |
-
fig = go.Figure()
|
73 |
-
|
74 |
# Determine the bin edges for the entire dataset to keep them consistent across groups
|
75 |
# bins = np.histogram_bin_edges(df['total_steps'], bins=10)
|
76 |
|
@@ -101,63 +106,68 @@ counts_per_method = {k: v for k, v in sorted(counts_per_method.items(), key=lamb
|
|
101 |
|
102 |
|
103 |
count_or_percetange = st.toggle("show counts", False)
|
104 |
-
# Create a figure
|
105 |
-
fig = go.Figure()
|
106 |
-
|
107 |
-
# Add a bar for each bin range across all methods
|
108 |
-
for i, bin_label in enumerate(bin_labels):
|
109 |
-
for method, counts in counts_per_method.items():
|
110 |
-
fig.add_trace(go.Bar(
|
111 |
-
# name=method, # This will be the legend entry
|
112 |
-
x=[counts[i]/counts.sum()*100] if not count_or_percetange else [counts[i]],
|
113 |
-
y=[method], # Method as the y-axis category
|
114 |
-
# name=bin_label,
|
115 |
-
orientation="h", # Horizontal bars
|
116 |
-
marker=dict(
|
117 |
-
color=bin_colors[i],
|
118 |
-
line=dict(color="rgb(248, 248, 249)", width=1)
|
119 |
-
),
|
120 |
-
text=f"{bin_label}: {counts[i]/counts.sum()*100:.0f}%",
|
121 |
-
width=0.5
|
122 |
-
))
|
123 |
-
|
124 |
-
# Update the layout to stack the bars
|
125 |
-
fig.update_layout(
|
126 |
-
barmode="stack", # Stack the bars
|
127 |
-
title="Total MD steps (before crash or completion)",
|
128 |
-
xaxis_title="Percentage (%)" if not count_or_percetange else "Count",
|
129 |
-
yaxis_title="Method",
|
130 |
-
showlegend=False
|
131 |
-
)
|
132 |
-
|
133 |
-
# bins = np.linspace(0, 0.9, 10)
|
134 |
-
|
135 |
-
# for method, data in df.groupby("method"):
|
136 |
-
|
137 |
-
# # print(method, data)
|
138 |
-
# counts, bins = np.histogram(data['total_steps'])
|
139 |
-
|
140 |
-
# bin_labels = [f"{int(bins[i])}-{int(bins[i+1])}" for i in range(len(bins)-1)]
|
141 |
-
|
142 |
-
# # Create a horizontal bar chart
|
143 |
-
# fig = go.Figure(go.Bar(
|
144 |
-
# x=[counts[i]], # Count for this bin
|
145 |
-
# y=[method], # Method as the y-axis category
|
146 |
-
# # x=counts, # Bar lengths
|
147 |
-
# # y=bin_labels, # Bin labels as y-tick labels
|
148 |
-
# orientation='h' # Horizontal bars
|
149 |
-
# ))
|
150 |
-
|
151 |
-
|
152 |
-
# # Update layout for clarity
|
153 |
-
# fig.update_layout(
|
154 |
-
# title="Histogram of Total Steps",
|
155 |
-
# xaxis_title="Count",
|
156 |
-
# yaxis_title="Total Steps Range"
|
157 |
-
# )
|
158 |
-
|
159 |
-
st.plotly_chart(fig)
|
160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
###
|
163 |
|
@@ -166,44 +176,49 @@ st.plotly_chart(fig)
|
|
166 |
|
167 |
# """)
|
168 |
|
169 |
-
fig = px.scatter(
|
170 |
-
df,
|
171 |
-
x="natoms",
|
172 |
-
y="steps_per_second",
|
173 |
-
color="method",
|
174 |
-
size="total_steps",
|
175 |
-
hover_data=["material_id", "formula"],
|
176 |
-
color_discrete_map=method_color_mapping,
|
177 |
-
# trendline="ols",
|
178 |
-
# trendline_options=dict(log_x=True),
|
179 |
-
log_x=True,
|
180 |
-
# log_y=True,
|
181 |
-
# range_y=[1, 1e2],
|
182 |
-
range_x=[df["natoms"].min()*0.9, df["natoms"].max()*1.1],
|
183 |
-
# range_x=[1e3, 1e2],
|
184 |
-
title="Inference speed (on single A100 GPU)",
|
185 |
-
labels={"steps_per_second": "Steps per second", "natoms": "Number of atoms"},
|
186 |
-
)
|
187 |
-
|
188 |
-
|
189 |
def func(x, a, n):
|
190 |
return a * x ** (-n)
|
191 |
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
|
195 |
-
data.dropna(subset=["steps_per_second"], inplace=True)
|
196 |
-
popt, pcov = curve_fit(func, data["natoms"], data["steps_per_second"])
|
197 |
|
198 |
-
fig.add_trace(go.Scatter(
|
199 |
-
x=x,
|
200 |
-
y=func(x, *popt),
|
201 |
-
mode="lines",
|
202 |
-
# name='Fit',
|
203 |
-
line=dict(color=method_color_mapping[method], width=3),
|
204 |
-
showlegend=False,
|
205 |
-
name=f"{popt[0]:.2f}N^{-popt[1]:.2f}",
|
206 |
-
hovertext=f"{popt[0]:.2f}N^{-popt[1]:.2f}",
|
207 |
-
))
|
208 |
|
209 |
-
|
|
|
53 |
if not models:
|
54 |
st.stop()
|
55 |
|
56 |
+
@st.cache_data
|
57 |
+
def get_data(models):
|
58 |
|
59 |
+
families = [REGISTRY[str(model)]["family"] for model in models]
|
60 |
+
|
61 |
+
dfs = [
|
62 |
+
pd.read_json(DATA_DIR / family.lower() / "chloride-salts.json")
|
63 |
+
for family in families
|
64 |
+
]
|
65 |
+
df = pd.concat(dfs, ignore_index=True)
|
66 |
+
df.drop_duplicates(inplace=True, subset=["material_id", "formula", "method"])
|
67 |
+
|
68 |
+
return df
|
69 |
+
|
70 |
+
df = get_data(models)
|
71 |
|
72 |
method_color_mapping = {
|
73 |
method: color_sequence[i % len(color_sequence)]
|
|
|
76 |
|
77 |
###
|
78 |
|
|
|
|
|
79 |
# Determine the bin edges for the entire dataset to keep them consistent across groups
|
80 |
# bins = np.histogram_bin_edges(df['total_steps'], bins=10)
|
81 |
|
|
|
106 |
|
107 |
|
108 |
count_or_percetange = st.toggle("show counts", False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
@st.experimental_fragment()
|
111 |
+
def plot_md_steps(counts_per_method, count_or_percetange):
|
112 |
+
# Create a figure
|
113 |
+
fig = go.Figure()
|
114 |
+
|
115 |
+
# Add a bar for each bin range across all methods
|
116 |
+
for i, bin_label in enumerate(bin_labels):
|
117 |
+
for method, counts in counts_per_method.items():
|
118 |
+
fig.add_trace(go.Bar(
|
119 |
+
# name=method, # This will be the legend entry
|
120 |
+
x=[counts[i]/counts.sum()*100] if not count_or_percetange else [counts[i]],
|
121 |
+
y=[method], # Method as the y-axis category
|
122 |
+
# name=bin_label,
|
123 |
+
orientation="h", # Horizontal bars
|
124 |
+
marker=dict(
|
125 |
+
color=bin_colors[i],
|
126 |
+
line=dict(color="rgb(248, 248, 249)", width=1)
|
127 |
+
),
|
128 |
+
text=f"{bin_label}: {counts[i]/counts.sum()*100:.0f}%",
|
129 |
+
width=0.5
|
130 |
+
))
|
131 |
+
|
132 |
+
# Update the layout to stack the bars
|
133 |
+
fig.update_layout(
|
134 |
+
barmode="stack", # Stack the bars
|
135 |
+
title="Total MD steps (before crash or completion)",
|
136 |
+
xaxis_title="Percentage (%)" if not count_or_percetange else "Count",
|
137 |
+
yaxis_title="Method",
|
138 |
+
showlegend=False
|
139 |
+
)
|
140 |
+
|
141 |
+
# bins = np.linspace(0, 0.9, 10)
|
142 |
+
|
143 |
+
# for method, data in df.groupby("method"):
|
144 |
+
|
145 |
+
# # print(method, data)
|
146 |
+
# counts, bins = np.histogram(data['total_steps'])
|
147 |
+
|
148 |
+
# bin_labels = [f"{int(bins[i])}-{int(bins[i+1])}" for i in range(len(bins)-1)]
|
149 |
+
|
150 |
+
# # Create a horizontal bar chart
|
151 |
+
# fig = go.Figure(go.Bar(
|
152 |
+
# x=[counts[i]], # Count for this bin
|
153 |
+
# y=[method], # Method as the y-axis category
|
154 |
+
# # x=counts, # Bar lengths
|
155 |
+
# # y=bin_labels, # Bin labels as y-tick labels
|
156 |
+
# orientation='h' # Horizontal bars
|
157 |
+
# ))
|
158 |
+
|
159 |
+
|
160 |
+
# # Update layout for clarity
|
161 |
+
# fig.update_layout(
|
162 |
+
# title="Histogram of Total Steps",
|
163 |
+
# xaxis_title="Count",
|
164 |
+
# yaxis_title="Total Steps Range"
|
165 |
+
# )
|
166 |
+
|
167 |
+
st.plotly_chart(fig)
|
168 |
+
|
169 |
+
|
170 |
+
plot_md_steps(counts_per_method, count_or_percetange)
|
171 |
|
172 |
###
|
173 |
|
|
|
176 |
|
177 |
# """)
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
def func(x, a, n):
|
180 |
return a * x ** (-n)
|
181 |
|
182 |
+
@st.experimental_fragment()
|
183 |
+
def plot_speed(df, method_color_mapping):
|
184 |
+
|
185 |
+
fig = px.scatter(
|
186 |
+
df,
|
187 |
+
x="natoms",
|
188 |
+
y="steps_per_second",
|
189 |
+
color="method",
|
190 |
+
size="total_steps",
|
191 |
+
hover_data=["material_id", "formula"],
|
192 |
+
color_discrete_map=method_color_mapping,
|
193 |
+
# trendline="ols",
|
194 |
+
# trendline_options=dict(log_x=True),
|
195 |
+
log_x=True,
|
196 |
+
# log_y=True,
|
197 |
+
# range_y=[1, 1e2],
|
198 |
+
range_x=[df["natoms"].min()*0.9, df["natoms"].max()*1.1],
|
199 |
+
# range_x=[1e3, 1e2],
|
200 |
+
title="Inference speed (on single A100 GPU)",
|
201 |
+
labels={"steps_per_second": "Steps per second", "natoms": "Number of atoms"},
|
202 |
+
)
|
203 |
+
|
204 |
+
x = np.linspace(df["natoms"].min(), df["natoms"].max(), 100)
|
205 |
+
|
206 |
+
for method, data in df.groupby("method"):
|
207 |
+
data.dropna(subset=["steps_per_second"], inplace=True)
|
208 |
+
popt, pcov = curve_fit(func, data["natoms"], data["steps_per_second"])
|
209 |
+
|
210 |
+
fig.add_trace(go.Scatter(
|
211 |
+
x=x,
|
212 |
+
y=func(x, *popt),
|
213 |
+
mode="lines",
|
214 |
+
# name='Fit',
|
215 |
+
line=dict(color=method_color_mapping[method], width=3),
|
216 |
+
showlegend=False,
|
217 |
+
name=f"{popt[0]:.2f}N^{-popt[1]:.2f}",
|
218 |
+
hovertext=f"{popt[0]:.2f}N^{-popt[1]:.2f}",
|
219 |
+
))
|
220 |
|
221 |
+
st.plotly_chart(fig)
|
|
|
|
|
222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
+
plot_speed(df, method_color_mapping)
|