""" Defines the tasks for computing the elastic tensor. This module has been modified from MatCalc https://github.com/materialsvirtuallab/matcalc/blob/main/src/matcalc/elasticity.py https://github.com/materialsvirtuallab/matcalc/blob/main/LICENSE BSD 3-Clause License Copyright (c) 2023, Materials Virtual Lab Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from __future__ import annotations from typing import TYPE_CHECKING, Any import numpy as np from numpy.typing import ArrayLike from prefect import task from prefect.cache_policies import INPUTS, TASK_SOURCE from prefect.runtime import task_run from prefect.states import State from ase import Atoms from ase.filters import * # type: ignore from ase.optimize import * # type: ignore from ase.optimize.optimize import Optimizer from mlip_arena.models import MLIPEnum from mlip_arena.tasks.optimize import run as OPT from pymatgen.analysis.elasticity import DeformedStructureSet, ElasticTensor, Strain from pymatgen.analysis.elasticity.elastic import get_strain_state_dict from pymatgen.io.ase import AseAtomsAdaptor if TYPE_CHECKING: from ase.filters import Filter def _generate_task_run_name(): task_name = task_run.task_name parameters = task_run.parameters atoms = parameters["atoms"] calculator_name = parameters["calculator_name"] return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}" @task( name="Elasticity", task_run_name=_generate_task_run_name, cache_policy=TASK_SOURCE + INPUTS, # cache_key_fn=task_input_hash, ) def run( atoms: Atoms, calculator_name: str | MLIPEnum, calculator_kwargs: dict | None = None, device: str | None = None, optimizer: Optimizer | str = "BFGSLineSearch", # type: ignore optimizer_kwargs: dict | None = None, filter: Filter | str | None = "FrechetCell", # type: ignore filter_kwargs: dict | None = None, criterion: dict | None = None, normal_strains: list[float] | np.ndarray | None = np.linspace(-0.01, 0.01, 4), shear_strains: list[float] | np.ndarray | None = np.linspace(-0.06, 0.06, 4), persist_opt: bool = True, cache_opt: bool = True, ) -> dict[str, Any] | State: """ Compute the elastic tensor for the given structure and calculator. Args: atoms (Atoms): The input structure. calculator_name (str | MLIPEnum): The calculator name. calculator_kwargs (dict, optional): The calculator kwargs. Defaults to None. device (str, optional): The device. Defaults to None. optimizer (Optimizer | str, optional): The optimizer. Defaults to "BFGSLineSearch". optimizer_kwargs (dict, optional): The optimizer kwargs. Defaults to None. filter (Filter | str, optional): The filter. Defaults to "FrechetCell". filter_kwargs (dict, optional): The filter kwargs. Defaults to None. criterion (dict, optional): The criterion. Defaults to None. normal_strains (list[float] | np.ndarray, optional): The normal strains. Defaults to np.linspace(-0.01, 0.01, 4). shear_strains (list[float] | np.ndarray, optional): The shear strains. Defaults to np.linspace(-0.06, 0.06, 4). concurrent (bool, optional): Whether to run concurrently. Defaults to True. persist_opt (bool, optional): Whether to persist the optimizer results. Defaults to True. cache_opt (bool, optional): Whether to cache the optimizer results. Defaults to True. Returns: dict[str, Any] | State: The elastic tensor. """ OPT_ = OPT.with_options( refresh_cache=not cache_opt, persist_result=persist_opt, ) first_relax = OPT_( atoms=atoms, calculator_name=calculator_name, calculator_kwargs=calculator_kwargs, device=device, optimizer=optimizer, optimizer_kwargs=optimizer_kwargs, filter=filter, filter_kwargs=filter_kwargs, criterion=criterion, return_state=True, ) if first_relax.is_failed(): return first_relax result = first_relax.result(raise_on_failure=False) assert isinstance(result, dict) relaxed = result["atoms"] if isinstance(normal_strains, np.ndarray): normal_strains = normal_strains.tolist() if isinstance(shear_strains, np.ndarray): shear_strains = shear_strains.tolist() assert isinstance(relaxed, Atoms) assert isinstance(normal_strains, list) assert isinstance(shear_strains, list) structure = AseAtomsAdaptor.get_structure(relaxed) # type: ignore deformed_structure_set = DeformedStructureSet( structure, normal_strains, shear_strains, ) stresses = [] for deformed_structure in deformed_structure_set: atoms = deformed_structure.to_ase_atoms() atoms.calc = relaxed.calc stresses.append(atoms.get_stress(voigt=False)) strains = [ Strain.from_deformation(deformation) for deformation in deformed_structure_set.deformations ] fit = fit_elastic_tensor( strains, stresses, eq_stress=relaxed.get_stress(voigt=False) ) return { "elastic_tensor": fit["elastic_tensor"], "residuals_sum": fit["residuals_sum"], } @task def fit_elastic_tensor( strains: ArrayLike, stresses: ArrayLike, eq_stress: ArrayLike | None = None, tolerance: float = 1e-7, ): """ Compute the elastic tensor from the given strains and stresses. Args: strains (ArrayLike): The strains. stresses (ArrayLike): The stresses. tolerance (float, optional): The tolerance. Defaults to 1e-7. Returns: ElasticTensor: The elastic tensor. """ strain_states = [tuple(ss) for ss in np.eye(6)] ss_dict = get_strain_state_dict( strains, stresses, eq_stress=eq_stress, add_eq=True if eq_stress is not None else False, ) c_ij = np.zeros((6, 6)) residuals_sum = 0.0 for ii in range(6): strain = ss_dict[strain_states[ii]]["strains"] stress = ss_dict[strain_states[ii]]["stresses"] for jj in range(6): fit = np.polyfit(strain[:, ii], stress[:, jj], 1, full=True) c_ij[ii, jj] = fit[0][0] residuals_sum += fit[1][0] if len(fit[1]) > 0 else 0.0 elastic_tensor = ElasticTensor.from_voigt(c_ij) return { "elastic_tensor": elastic_tensor.zeroed(tolerance), "residuals_sum": residuals_sum, }