from __future__ import annotations import importlib from enum import Enum from pathlib import Path import torch import yaml from ase import Atoms from ase.calculators.calculator import Calculator, all_changes from huggingface_hub import PyTorchModelHubMixin from torch import nn # from torch_geometric.data import Data with open(Path(__file__).parent / "registry.yaml", encoding="utf-8") as f: REGISTRY = yaml.safe_load(f) MLIPMap = {} for model, metadata in REGISTRY.items(): try: module = importlib.import_module(f"{__package__}.{metadata['module']}.{metadata['family']}") MLIPMap[model] = getattr(module, metadata["class"]) except ModuleNotFoundError as e: print(e) continue MLIPEnum = Enum("MLIPEnum", MLIPMap) class MLIP( nn.Module, PyTorchModelHubMixin, tags=["atomistic-simulation", "MLIP"], ): def __init__(self, model: nn.Module) -> None: super().__init__() self.model = model def forward(self, x): return self.model(x) class MLIPCalculator(MLIP, Calculator): name: str implemented_properties: list[str] = ["energy", "forces", "stress"] def __init__( self, model, # ASE Calculator restart=None, atoms=None, directory=".", calculator_kwargs: dict = {}, ): MLIP.__init__(self, model=model) # Initialize MLIP part Calculator.__init__( self, restart=restart, atoms=atoms, directory=directory, **calculator_kwargs ) # Initialize ASE Calculator part # Additional initialization if needed # self.name: str = self.__class__.__name__ # self.device = device or torch.device( # "cuda" if torch.cuda.is_available() else "cpu" # ) # self.model: MLIP = MLIP.from_pretrained(model_path, map_location=self.device) # self.implemented_properties = ["energy", "forces", "stress"] def calculate( self, atoms: Atoms, properties: list[str], system_changes: list = all_changes, ): """Calculate energies and forces for the given Atoms object""" super().calculate(atoms, properties, system_changes) output = self.forward(atoms) self.results = {} if "energy" in properties: self.results["energy"] = output["energy"].squeeze().item() if "forces" in properties: self.results["forces"] = output["forces"].squeeze().cpu().detach().numpy() if "stress" in properties: self.results["stress"] = output["stress"].squeeze().cpu().detach().numpy() def forward(self, x: Atoms) -> dict[str, torch.Tensor]: """Implement data conversion, graph creation, and model forward pass Example implementation: 1. Use `ase.neighborlist.NeighborList` to get neighbor list 2. Create `torch_geometric.data.Data` object and copy the data 3. Pass the `Data` object to the model and return the output """ raise NotImplementedError