"""Utility functions for MLIP models.""" import torch try: from prefect.logging import get_run_logger logger = get_run_logger() except (ImportError, RuntimeError): from loguru import logger def get_freer_device() -> torch.device: """Get the GPU with the most free memory, or use MPS if available. s Returns: torch.device: The selected GPU device or MPS. Raises: ValueError: If no GPU or MPS is available. """ device_count = torch.cuda.device_count() if device_count > 0: # If CUDA GPUs are available, select the one with the most free memory mem_free = [ torch.cuda.get_device_properties(i).total_memory - torch.cuda.memory_allocated(i) for i in range(device_count) ] free_gpu_index = mem_free.index(max(mem_free)) device = torch.device(f"cuda:{free_gpu_index}") logger.info( f"Selected GPU {device} with {mem_free[free_gpu_index] / 1024**2:.2f} MB free memory from {device_count} GPUs" ) elif torch.backends.mps.is_available(): # If no CUDA GPUs are available but MPS is, use MPS logger.info("No GPU available. Using MPS.") device = torch.device("mps") else: # Fallback to CPU if neither CUDA GPUs nor MPS are available logger.info("No GPU or MPS available. Using CPU.") device = torch.device("cpu") return device