File size: 3,416 Bytes
9b5b26a
 
 
 
c19d193
6aae614
0d08ddf
8fe992b
9b5b26a
 
627060a
 
 
 
26ea95c
 
 
 
627060a
9b5b26a
627060a
19748f6
 
 
 
 
 
 
9b5b26a
627060a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26ea95c
 
 
 
 
 
 
 
 
 
 
627060a
26ea95c
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
627060a
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer

from Gradio_UI import GradioUI

from langdetect import detect
import requests
from smolagents import tool

model_name = "facebook/m2m100_418M"
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
translation_model = M2M100ForConditionalGeneration.from_pretrained(model_name)


@tool
def agent_translate(text: str) -> str:
    """A tool that translate text with next logic:
        1) If text starts with 'PL:', translate the rest to Polish.
        2) If detected language == 'ru', translate to English.
        3) Else translate to Russian.
        and return translated text
    Args:
        text: text in russian/english or polish languages.
    """
    if text.startswith("PL:"):
        original = text[3:].strip()
        target_lang = "PL"
    else:
        detected_lang = detect(text)
        if detected_lang == "ru":
            target_lang = "EN"
            original = text
        else:
            target_lang = "RU"
            original = text

    params = {
        "auth_key": DEEPL_API_KEY,
        "text": original,
        "target_lang": target_lang
    }

    try:
        inputs = tokenizer(original, return_tensors="pt")

        forced_bos_token_id = tokenizer.get_lang_id(target_lang)

        generated_tokens = translation_model.generate(
            **inputs,
            forced_bos_token_id=forced_bos_token_id
        )

        translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
        return translated_text
    except Exception as e:
        return f"Error during translating: {str(e)}"

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[agent_translate, final_answer], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()