Spaces:
Configuration error
Configuration error
add local perplexity
Browse files- local_perplexity.py +151 -58
local_perplexity.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# Copyright
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
@@ -11,85 +11,178 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
"""
|
15 |
|
16 |
-
import evaluate
|
17 |
import datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
-
# TODO: Add BibTeX citation
|
21 |
_CITATION = """\
|
22 |
-
@InProceedings{huggingface:module,
|
23 |
-
title = {A great new module},
|
24 |
-
authors={huggingface, Inc.},
|
25 |
-
year={2020}
|
26 |
-
}
|
27 |
"""
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
"""
|
33 |
|
34 |
-
|
35 |
-
# TODO: Add description of the arguments of the module here
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
-
Calculates how good are predictions given some references, using certain scores
|
38 |
Args:
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
Returns:
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
Examples:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
"""
|
55 |
|
56 |
-
# TODO: Define external resources urls if needed
|
57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
58 |
-
|
59 |
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
-
class
|
62 |
-
"""TODO: Short description of my evaluation module."""
|
63 |
-
|
64 |
def _info(self):
|
65 |
-
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
66 |
return evaluate.MetricInfo(
|
67 |
-
# This is the description that will appear on the modules page.
|
68 |
module_type="metric",
|
69 |
description=_DESCRIPTION,
|
70 |
citation=_CITATION,
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
homepage="http://module.homepage",
|
79 |
-
# Additional links to the codebase or references
|
80 |
-
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
81 |
-
reference_urls=["http://path.to.reference.url/new_module"]
|
82 |
)
|
83 |
|
84 |
-
def
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
"""Perplexity modified to use local models."""
|
15 |
|
|
|
16 |
import datasets
|
17 |
+
import numpy as np
|
18 |
+
import torch
|
19 |
+
from torch.nn import CrossEntropyLoss
|
20 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
21 |
+
|
22 |
+
import evaluate
|
23 |
+
from evaluate import logging
|
24 |
|
25 |
|
|
|
26 |
_CITATION = """\
|
|
|
|
|
|
|
|
|
|
|
27 |
"""
|
28 |
|
29 |
+
_DESCRIPTION = """
|
30 |
+
Perplexity (PPL) is one of the most common metrics for evaluating language models.
|
31 |
+
It is defined as the exponentiated average negative log-likelihood of a sequence, calculated with exponent base `e`.
|
32 |
+
For more information, see https://huggingface.co/docs/transformers/perplexity
|
33 |
"""
|
34 |
|
|
|
|
|
35 |
_KWARGS_DESCRIPTION = """
|
|
|
36 |
Args:
|
37 |
+
model_id (str): model used for calculating Perplexity
|
38 |
+
NOTE: Perplexity can only be calculated for causal language models.
|
39 |
+
This includes models such as gpt2, causal variations of bert,
|
40 |
+
causal versions of t5, and more (the full list can be found
|
41 |
+
in the AutoModelForCausalLM documentation here:
|
42 |
+
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
|
43 |
+
predictions (list of str): input text, each separate text snippet
|
44 |
+
is one list entry.
|
45 |
+
batch_size (int): the batch size to run texts through the model. Defaults to 16.
|
46 |
+
add_start_token (bool): whether to add the start token to the texts,
|
47 |
+
so the perplexity can include the probability of the first word. Defaults to True.
|
48 |
+
device (str): device to run on, defaults to 'cuda' when available
|
49 |
Returns:
|
50 |
+
perplexity: dictionary containing the perplexity scores for the texts
|
51 |
+
in the input list, as well as the mean perplexity. If one of the input texts is
|
52 |
+
longer than the max input length of the model, then it is truncated to the
|
53 |
+
max length for the perplexity computation.
|
54 |
Examples:
|
55 |
+
Example 1:
|
56 |
+
>>> perplexity = evaluate.load("perplexity", module_type="metric")
|
57 |
+
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
58 |
+
>>> results = perplexity.compute(model_id='gpt2',
|
59 |
+
... add_start_token=False,
|
60 |
+
... predictions=input_texts) # doctest:+ELLIPSIS
|
61 |
+
>>> print(list(results.keys()))
|
62 |
+
['perplexities', 'mean_perplexity']
|
63 |
+
>>> print(round(results["mean_perplexity"], 0))
|
64 |
+
647.0
|
65 |
+
>>> print(round(results["perplexities"][0], 0))
|
66 |
+
32.0
|
67 |
+
Example 2:
|
68 |
+
>>> from datasets import load_dataset
|
69 |
+
>>> perplexity = evaluate.load("perplexity", module_type="metric")
|
70 |
+
>>> input_texts = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")["text"][:10] # doctest: +SKIP
|
71 |
+
>>> input_texts = [s for s in input_texts if s!='']
|
72 |
+
>>> results = perplexity.compute(model_id='gpt2',
|
73 |
+
... predictions=input_texts)
|
74 |
+
>>> print(list(results.keys()))
|
75 |
+
['perplexities', 'mean_perplexity']
|
76 |
+
>>> print(round(results["mean_perplexity"], 2)) # doctest: +SKIP
|
77 |
+
576.76
|
78 |
+
>>> print(round(results["perplexities"][0], 2)) # doctest: +SKIP
|
79 |
+
889.28
|
80 |
"""
|
81 |
|
|
|
|
|
|
|
82 |
|
83 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
84 |
+
class Perplexity(evaluate.Metric):
|
|
|
|
|
85 |
def _info(self):
|
|
|
86 |
return evaluate.MetricInfo(
|
|
|
87 |
module_type="metric",
|
88 |
description=_DESCRIPTION,
|
89 |
citation=_CITATION,
|
90 |
inputs_description=_KWARGS_DESCRIPTION,
|
91 |
+
features=datasets.Features(
|
92 |
+
{
|
93 |
+
"predictions": datasets.Value("string"),
|
94 |
+
}
|
95 |
+
),
|
96 |
+
reference_urls=["https://huggingface.co/docs/transformers/perplexity"],
|
|
|
|
|
|
|
|
|
97 |
)
|
98 |
|
99 |
+
def _compute(
|
100 |
+
self, predictions, model_id, batch_size: int = 16, add_start_token: bool = True, device=None, max_length=None, local_file_only: bool = False
|
101 |
+
):
|
102 |
+
|
103 |
+
if device is not None:
|
104 |
+
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
|
105 |
+
if device == "gpu":
|
106 |
+
device = "cuda"
|
107 |
+
else:
|
108 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
109 |
+
|
110 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, local_files_only=local_file_only)
|
111 |
+
model = model.to(device)
|
112 |
+
|
113 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, local_files_only=local_file_only)
|
114 |
+
|
115 |
+
# if batch_size > 1 (which generally leads to padding being required), and
|
116 |
+
# if there is not an already assigned pad_token, assign an existing
|
117 |
+
# special token to also be the padding token
|
118 |
+
if tokenizer.pad_token is None and batch_size > 1:
|
119 |
+
existing_special_tokens = list(tokenizer.special_tokens_map_extended.values())
|
120 |
+
# check that the model already has at least one special token defined
|
121 |
+
assert (
|
122 |
+
len(existing_special_tokens) > 0
|
123 |
+
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
|
124 |
+
# assign one of the special tokens to also be the pad token
|
125 |
+
tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]})
|
126 |
+
|
127 |
+
if add_start_token and max_length:
|
128 |
+
# leave room for <BOS> token to be added:
|
129 |
+
assert (
|
130 |
+
tokenizer.bos_token is not None
|
131 |
+
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
|
132 |
+
max_tokenized_len = max_length - 1
|
133 |
+
else:
|
134 |
+
max_tokenized_len = max_length
|
135 |
+
|
136 |
+
encodings = tokenizer(
|
137 |
+
predictions,
|
138 |
+
add_special_tokens=False,
|
139 |
+
padding=True,
|
140 |
+
truncation=True if max_tokenized_len else False,
|
141 |
+
max_length=max_tokenized_len,
|
142 |
+
return_tensors="pt",
|
143 |
+
return_attention_mask=True,
|
144 |
+
).to(device)
|
145 |
+
|
146 |
+
encoded_texts = encodings["input_ids"]
|
147 |
+
attn_masks = encodings["attention_mask"]
|
148 |
+
|
149 |
+
# check that each input is long enough:
|
150 |
+
if add_start_token:
|
151 |
+
assert torch.all(torch.ge(attn_masks.sum(1), 1)), "Each input text must be at least one token long."
|
152 |
+
else:
|
153 |
+
assert torch.all(
|
154 |
+
torch.ge(attn_masks.sum(1), 2)
|
155 |
+
), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
|
156 |
+
|
157 |
+
ppls = []
|
158 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
159 |
+
|
160 |
+
for start_index in logging.tqdm(range(0, len(encoded_texts), batch_size)):
|
161 |
+
end_index = min(start_index + batch_size, len(encoded_texts))
|
162 |
+
encoded_batch = encoded_texts[start_index:end_index]
|
163 |
+
attn_mask = attn_masks[start_index:end_index]
|
164 |
+
|
165 |
+
if add_start_token:
|
166 |
+
bos_tokens_tensor = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(device)
|
167 |
+
encoded_batch = torch.cat([bos_tokens_tensor, encoded_batch], dim=1)
|
168 |
+
attn_mask = torch.cat(
|
169 |
+
[torch.ones(bos_tokens_tensor.size(), dtype=torch.int64).to(device), attn_mask], dim=1
|
170 |
+
)
|
171 |
+
|
172 |
+
labels = encoded_batch
|
173 |
+
|
174 |
+
with torch.no_grad():
|
175 |
+
out_logits = model(encoded_batch, attention_mask=attn_mask).logits
|
176 |
+
|
177 |
+
shift_logits = out_logits[..., :-1, :].contiguous()
|
178 |
+
shift_labels = labels[..., 1:].contiguous()
|
179 |
+
shift_attention_mask_batch = attn_mask[..., 1:].contiguous()
|
180 |
+
|
181 |
+
perplexity_batch = torch.exp(
|
182 |
+
(loss_fct(shift_logits.transpose(1, 2), shift_labels) * shift_attention_mask_batch).sum(1)
|
183 |
+
/ shift_attention_mask_batch.sum(1)
|
184 |
+
)
|
185 |
+
|
186 |
+
ppls += perplexity_batch.tolist()
|
187 |
+
|
188 |
+
return {"perplexities": ppls, "mean_perplexity": np.mean(ppls)}
|