Spaces:
Runtime error
Runtime error
import gradio as gr | |
from layers import BilinearUpSampling2D | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from huggingface_hub import from_pretrained_keras | |
custom_objects = {'BilinearUpSampling2D': BilinearUpSampling2D, 'depth_loss_function': None} | |
print('Loading model...') | |
model = from_pretrained_keras("keras-io/monocular-depth-estimation", custom_objects=custom_objects, compile=False) | |
print('Successfully loaded model...') | |
import importlib | |
import utils | |
importlib.reload(utils) | |
def infer(image, min_th, max_th): | |
print('_'*20) | |
inputs = utils.load_images([image]) | |
outputs = utils.predict(model, inputs) | |
plasma = plt.get_cmap('plasma') | |
rescaled = outputs[0][:, :, 0] | |
print("Min Max Bef", np.min(rescaled), np.max(rescaled)) | |
rescaled = rescaled - np.min(rescaled) | |
rescaled = rescaled / np.max(rescaled) | |
image_out = plasma(rescaled)[:, :, :3] | |
print("Min Max Aft", np.min(rescaled), np.max(rescaled)) | |
print("Shape Scaled:",rescaled.shape) | |
filtered = rescaled | |
# filtered[filtered[:, :, 0] < min_th/100, 0] = 0 | |
# filtered[filtered[:, :, 0] < min_th/100, 1] = 0 | |
# filtered[filtered[:, :, 0] < min_th/100, 2] = 0 | |
# filt_arr = filtered[((filtered[:,0] > min_th/100) & (filtered[:,0] < max_th/100))] | |
filt_arr = (filtered > min_th/100) * filtered * (filtered < max_th/100) | |
print("Shape Image:",image.shape) | |
print("Shape Image filt:",im_filt.shape) | |
print("Shape Image Heat:",image_out.shape) | |
im_filt = plasma(filt_arr)[:, :, :3] | |
return image_out, im_filt, image | |
# def detr(im): | |
# return im | |
gr_input = [ | |
gr.inputs.Image(label="image", type="numpy", shape=(640, 480)) | |
,gr.inputs.Slider(minimum=0, maximum=100, step=5, default=0, label="Minimum Threshold") | |
,gr.inputs.Slider(minimum=0, maximum=100, step=5, default=100, label="Maximum Threshold") | |
] | |
gr_output = [ | |
gr.outputs.Image(type="pil",label="HeatMap Image"), | |
gr.outputs.Image(type="pil",label="Filtered Image"), | |
gr.outputs.Image(type="pil",label="Output Image") | |
] | |
iface = gr.Interface( | |
fn=infer, | |
title="Space Title Here", | |
description = "Description Here", | |
inputs = gr_input, | |
outputs = gr_output | |
) | |
iface.launch() |