Spaces:
Running
Running
wissamantoun
commited on
Commit
·
9c398de
1
Parent(s):
cfd45f1
first commit
Browse files- .gitattributes +27 -0
- README.md +9 -2
- app.py +24 -0
- backend.py +0 -0
- images/AraELECTRA.png +0 -0
- images/AraGPT2.png +0 -0
- images/arabert_logo.png +0 -0
- pages/__init__.py +0 -0
- pages/home.py +152 -0
- pages/preprocess.py +736 -0
- pages/processor.py +177 -0
- requirements.txt +6 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,2 +1,9 @@
|
|
1 |
-
|
2 |
-
Arabic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Arabic GPT2 (AraGPT2)
|
3 |
+
emoji: ⌨
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: green
|
6 |
+
sdk: streamlit
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
9 |
+
---
|
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import awesome_streamlit as ast
|
3 |
+
import pages.home
|
4 |
+
import pages.processor
|
5 |
+
|
6 |
+
|
7 |
+
st.set_page_config(
|
8 |
+
page_title="TEST", page_icon="📖", initial_sidebar_state="expanded", layout="wide"
|
9 |
+
)
|
10 |
+
|
11 |
+
PAGES = {"Home": pages.home, "Arabic Text Preprocessor": pages.processor}
|
12 |
+
|
13 |
+
|
14 |
+
def main():
|
15 |
+
"""Main function."""
|
16 |
+
st.sidebar.title("Navigation")
|
17 |
+
selection = st.sidebar.radio("Pages", list(PAGES.keys()))
|
18 |
+
|
19 |
+
page = PAGES[selection]
|
20 |
+
ast.shared.components.write_page(page)
|
21 |
+
|
22 |
+
|
23 |
+
if __name__ == "__main__":
|
24 |
+
main()
|
backend.py
ADDED
File without changes
|
images/AraELECTRA.png
ADDED
images/AraGPT2.png
ADDED
images/arabert_logo.png
ADDED
pages/__init__.py
ADDED
File without changes
|
pages/home.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import awesome_streamlit as ast
|
3 |
+
|
4 |
+
|
5 |
+
def write():
|
6 |
+
st.markdown(
|
7 |
+
"""
|
8 |
+
# Arabic Natural Language Processing
|
9 |
+
|
10 |
+
|
11 |
+
In this HuggingFace space you will be able to test the different Arabic NLP models that my colleges at [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) have built, with some other applications.
|
12 |
+
|
13 |
+
Check the **Navigation bar** to access the apps:
|
14 |
+
- Arabic Text Preprocessor: Test how text imput is treated by our preprocessor
|
15 |
+
- Arabic Language Generation: Generate Arabic text using our AraGPT2 language models
|
16 |
+
- Arabic Sentiment Analysis: Test the senitment analysis model that won the [Arabic Senitment Analysis competition @ KAUST](https://www.kaggle.com/c/arabic-sentiment-analysis-2021-kaust)
|
17 |
+
- Arabic Masked Language Modeling: Test our AraBERT models MLM capabilities
|
18 |
+
"""
|
19 |
+
)
|
20 |
+
st.markdown("#")
|
21 |
+
col1, col2, col3 = st.columns(3)
|
22 |
+
|
23 |
+
col1.write("## **AraBERT**")
|
24 |
+
col1.image("images/arabert_logo.png", width=200)
|
25 |
+
|
26 |
+
col2.write("## **AraGPT2**")
|
27 |
+
col2.image("images/AraGPT2.png", width=200)
|
28 |
+
|
29 |
+
col3.write("## **AraElectra**")
|
30 |
+
col3.image("images/AraELECTRA.png", width=200)
|
31 |
+
|
32 |
+
st.markdown(
|
33 |
+
"""
|
34 |
+
|
35 |
+
You can find the more details in the source code and paper linked in our repository on GitHub [repo](https://github.com/aub-mind/arabert).
|
36 |
+
|
37 |
+
## Dataset
|
38 |
+
|
39 |
+
The pretraining data used for the new **AraBERT** model is also used for **AraGPT2 and AraELECTRA**.
|
40 |
+
|
41 |
+
The dataset consists of 77GB or 200,095,961 lines or 8,655,948,860 words or 82,232,988,358 chars (before applying Farasa Segmentation)
|
42 |
+
|
43 |
+
Our large models were train a TPUv3-128 provided by TFRC.
|
44 |
+
|
45 |
+
For the new dataset we added the unshuffled OSCAR corpus, after we thoroughly filter it, to the previous dataset used in AraBERTv1 but with out the websites that we previously crawled:
|
46 |
+
- OSCAR unshuffled and filtered.
|
47 |
+
- [Arabic Wikipedia dump](https://archive.org/details/arwiki-20190201) from 2020/09/01
|
48 |
+
- [The 1.5B words Arabic Corpus](https://www.semanticscholar.org/paper/1.5-billion-words-Arabic-Corpus-El-Khair/f3eeef4afb81223df96575adadf808fe7fe440b4)
|
49 |
+
- [The OSIAN Corpus](https://www.aclweb.org/anthology/W19-4619)
|
50 |
+
- Assafir news articles. Huge thank you for Assafir for the data
|
51 |
+
|
52 |
+
## Models
|
53 |
+
|
54 |
+
Model | HuggingFace Model Name | Size (MB/Params)| Pre-Segmentation | Hardware | Sequence Length | Batch Size | Num of Steps | Total Time (in Days) |
|
55 |
+
---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:
|
56 |
+
AraBERTv0.2-base | [bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) | 543MB / 136M | No | TPUv3-8 | 128 /512 | 2560/384 | 1M/ 2M | 36 |
|
57 |
+
AraBERTv0.2-large| [bert-large-arabertv02](https://huggingface.co/aubmindlab/bert-large-arabertv02) | 1.38G / 371M | No | TPUv3-128 | 128 /512 | 13440 / 2056 | 250K / 300K | 7 |
|
58 |
+
AraBERTv2-base| [bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) | 543MB / 136M | Yes | TPUv3-8 |128 /512 | 2560 / 384 | 1M / 2M | 36 |
|
59 |
+
AraBERTv2-large| [bert-large-arabertv2](https://huggingface.co/aubmindlab/bert-large-arabertv2) | 1.38G / 371M | Yes | TPUv3-128 |128 /512 | 13440 / 2056| 250K / 300K | 7 |
|
60 |
+
AraBERTv0.1-base| [bert-base-arabertv01](https://huggingface.co/aubmindlab/bert-base-arabertv01) | 543MB / 136M | No | TPUv2-8 |128 /512 |128 / 512 | 900K / 300K| 4 |
|
61 |
+
AraBERTv1-base| [bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) | 543MB / 136M | Yes | TPUv2-8 |128 /512 |128 / 512 | 900K / 300K| 4 |
|
62 |
+
AraGPT2-base | [aragpt2-base](https://huggingface.co/aubmindlab/aragpt2-base) | 527MB/135M | No | TPUv3-128 | 9.7M | 1792 | 125K | 1.5 |
|
63 |
+
AraGPT2-medium | [aragpt2-medium](https://huggingface.co/aubmindlab/aragpt2-medium) | 1.38G/370M | No |TPUv3-8 | 9.7M | 80 | 1M | 15 |
|
64 |
+
AraGPT2-large | [aragpt2-large](https://huggingface.co/aubmindlab/aragpt2-large) | 2.98GB/792M | No |TPUv3-128 | 9.7M | 256 | 220k | 3 |
|
65 |
+
AraGPT2-mega | [aragpt2-mega](https://huggingface.co/aubmindlab/aragpt2-mega) | 5.5GB/1.46B |No |TPUv3-128 | 9.7M | 256 | 800K | 9 |
|
66 |
+
AraELECTRA-base-generator | [araelectra-base-generator](https://huggingface.co/aubmindlab/araelectra-base-generator) | 227MB/60M | No | TPUv3-8 | 512 | 256 | 2M | 24
|
67 |
+
AraELECTRA-base-discriminator | [araelectra-base-discriminator](https://huggingface.co/aubmindlab/araelectra-base-discriminator) | 516MB/135M | No | TPUv3-8 | 512 | 256 | 2M | 24
|
68 |
+
|
69 |
+
All models are available in the `HuggingFace` model page under the [aubmindlab](https://huggingface.co/aubmindlab/) name. Checkpoints are available in PyTorch, TF2 and TF1 formats.
|
70 |
+
|
71 |
+
# Preprocessing
|
72 |
+
|
73 |
+
You can test the Arabic Preprocessing pipeline in the Arabic Text Preprocessing page.
|
74 |
+
|
75 |
+
It is recommended to apply our preprocessing function before training/testing on any dataset.
|
76 |
+
**Install farasapy to segment text for AraBERT v1 & v2 `pip install farasapy`**
|
77 |
+
|
78 |
+
```python
|
79 |
+
from arabert.preprocess import ArabertPreprocessor
|
80 |
+
|
81 |
+
model_name = "aubmindlab/bert-base-arabertv2"
|
82 |
+
arabert_prep = ArabertPreprocessor(model_name=model_name)
|
83 |
+
|
84 |
+
text = "ولن نبالغ إذا قلنا: إن 'هاتف' أو 'كمبيوتر المكتب' في زمننا هذا ضروري"
|
85 |
+
arabert_prep.preprocess(text)
|
86 |
+
>>>"و+ لن نبالغ إذا قل +نا : إن ' هاتف ' أو ' كمبيوتر ال+ مكتب ' في زمن +نا هذا ضروري"
|
87 |
+
```
|
88 |
+
|
89 |
+
You can also use the `unpreprocess()` function to reverse the preprocessing changes, by fixing the spacing around non alphabetical characters, and also de-segmenting if the model selected need pre-segmentation. We highly recommend unprocessing generated content of `AraGPT2` model, to make it look more natural.
|
90 |
+
```python
|
91 |
+
output_text = "و+ لن نبالغ إذا قل +نا : إن ' هاتف ' أو ' كمبيوتر ال+ مكتب ' في زمن +نا هذا ضروري"
|
92 |
+
arabert_prep.unpreprocess(output_text)
|
93 |
+
>>>"ولن نبالغ إذا قلنا: إن 'هاتف' أو 'كمبيوتر المكتب' في زمننا هذا ضروري"
|
94 |
+
```
|
95 |
+
|
96 |
+
# If you used this model please cite us as :
|
97 |
+
|
98 |
+
## AraBERT
|
99 |
+
Google Scholar has our Bibtex wrong (missing name), use this instead
|
100 |
+
```
|
101 |
+
@inproceedings{antoun2020arabert,
|
102 |
+
title={AraBERT: Transformer-based Model for Arabic Language Understanding},
|
103 |
+
author={Antoun, Wissam and Baly, Fady and Hajj, Hazem},
|
104 |
+
booktitle={LREC 2020 Workshop Language Resources and Evaluation Conference 11--16 May 2020},
|
105 |
+
pages={9}
|
106 |
+
}
|
107 |
+
```
|
108 |
+
## AraGPT2
|
109 |
+
```
|
110 |
+
@inproceedings{antoun-etal-2021-aragpt2,
|
111 |
+
title = "{A}ra{GPT}2: Pre-Trained Transformer for {A}rabic Language Generation",
|
112 |
+
author = "Antoun, Wissam and
|
113 |
+
Baly, Fady and
|
114 |
+
Hajj, Hazem",
|
115 |
+
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
|
116 |
+
month = apr,
|
117 |
+
year = "2021",
|
118 |
+
address = "Kyiv, Ukraine (Virtual)",
|
119 |
+
publisher = "Association for Computational Linguistics",
|
120 |
+
url = "https://www.aclweb.org/anthology/2021.wanlp-1.21",
|
121 |
+
pages = "196--207",
|
122 |
+
}
|
123 |
+
```
|
124 |
+
|
125 |
+
## AraELECTRA
|
126 |
+
```
|
127 |
+
@inproceedings{antoun-etal-2021-araelectra,
|
128 |
+
title = "{A}ra{ELECTRA}: Pre-Training Text Discriminators for {A}rabic Language Understanding",
|
129 |
+
author = "Antoun, Wissam and
|
130 |
+
Baly, Fady and
|
131 |
+
Hajj, Hazem",
|
132 |
+
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
|
133 |
+
month = apr,
|
134 |
+
year = "2021",
|
135 |
+
address = "Kyiv, Ukraine (Virtual)",
|
136 |
+
publisher = "Association for Computational Linguistics",
|
137 |
+
url = "https://www.aclweb.org/anthology/2021.wanlp-1.20",
|
138 |
+
pages = "191--195",
|
139 |
+
}
|
140 |
+
```
|
141 |
+
|
142 |
+
|
143 |
+
# Acknowledgments
|
144 |
+
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.
|
145 |
+
|
146 |
+
# Contacts
|
147 |
+
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | wfa07 (AT) mail (DOT) aub (DOT) edu | wissam.antoun (AT) gmail (DOT) com
|
148 |
+
|
149 |
+
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | fgb06 (AT) mail (DOT) aub (DOT) edu | baly.fady (AT) gmail (DOT) com
|
150 |
+
|
151 |
+
"""
|
152 |
+
)
|
pages/preprocess.py
ADDED
@@ -0,0 +1,736 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import html
|
2 |
+
import logging
|
3 |
+
import re
|
4 |
+
from typing import List
|
5 |
+
from farasa.segmenter import FarasaSegmenter
|
6 |
+
import emoji
|
7 |
+
|
8 |
+
import pyarabic.araby as araby
|
9 |
+
|
10 |
+
ACCEPTED_MODELS = [
|
11 |
+
"bert-base-arabertv01",
|
12 |
+
"bert-base-arabert",
|
13 |
+
"bert-base-arabertv02",
|
14 |
+
"bert-base-arabertv2",
|
15 |
+
"bert-large-arabertv02",
|
16 |
+
"bert-large-arabertv2",
|
17 |
+
"araelectra-base",
|
18 |
+
"araelectra-base-discriminator",
|
19 |
+
"araelectra-base-generator",
|
20 |
+
"araelectra-base-artydiqa",
|
21 |
+
"aragpt2-base",
|
22 |
+
"aragpt2-medium",
|
23 |
+
"aragpt2-large",
|
24 |
+
"aragpt2-mega",
|
25 |
+
]
|
26 |
+
|
27 |
+
SEGMENTED_MODELS = [
|
28 |
+
"bert-base-arabert",
|
29 |
+
"bert-base-arabertv2",
|
30 |
+
"bert-large-arabertv2",
|
31 |
+
]
|
32 |
+
|
33 |
+
SECOND_GEN_MODELS = [
|
34 |
+
"bert-base-arabertv02",
|
35 |
+
"bert-base-arabertv2",
|
36 |
+
"bert-large-arabertv02",
|
37 |
+
"bert-large-arabertv2",
|
38 |
+
"araelectra-base",
|
39 |
+
"araelectra-base-discriminator",
|
40 |
+
"araelectra-base-generator",
|
41 |
+
"araelectra-base-artydiqa",
|
42 |
+
"aragpt2-base",
|
43 |
+
"aragpt2-medium",
|
44 |
+
"aragpt2-large",
|
45 |
+
"aragpt2-mega",
|
46 |
+
]
|
47 |
+
|
48 |
+
farasa_segmenter = FarasaSegmenter(interactive=True)
|
49 |
+
|
50 |
+
|
51 |
+
class ArabertPreprocessor:
|
52 |
+
"""
|
53 |
+
A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo.
|
54 |
+
It also can unprocess the text ouput of the generated text
|
55 |
+
|
56 |
+
Args:
|
57 |
+
|
58 |
+
model_name (:obj:`str`): model name from the HuggingFace Models page without
|
59 |
+
the aubmindlab tag. Will default to a base Arabic preprocessor if model name was not found.
|
60 |
+
Current accepted models are:
|
61 |
+
|
62 |
+
- "bert-base-arabertv01": No farasa segmentation.
|
63 |
+
- "bert-base-arabert": with farasa segmentation.
|
64 |
+
- "bert-base-arabertv02": No farasas egmentation.
|
65 |
+
- "bert-base-arabertv2": with farasa segmentation.
|
66 |
+
- "bert-large-arabertv02": No farasas egmentation.
|
67 |
+
- "bert-large-arabertv2": with farasa segmentation.
|
68 |
+
- "araelectra-base": No farasa segmentation.
|
69 |
+
- "araelectra-base-discriminator": No farasa segmentation.
|
70 |
+
- "araelectra-base-generator": No farasa segmentation.
|
71 |
+
- "aragpt2-base": No farasa segmentation.
|
72 |
+
- "aragpt2-medium": No farasa segmentation.
|
73 |
+
- "aragpt2-large": No farasa segmentation.
|
74 |
+
- "aragpt2-mega": No farasa segmentation.
|
75 |
+
|
76 |
+
|
77 |
+
keep_emojis(:obj:`bool`, `optional`, defaults to :obj:`False`): don't remove emojis while preprocessing.
|
78 |
+
|
79 |
+
remove_html_markup(:obj: `bool`, `optional`, defaults to :obj:`True`): Whether to remove html artfacts,
|
80 |
+
should be set to False when preprocessing TyDi QA.
|
81 |
+
|
82 |
+
replace_urls_emails_mentions(:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to replace email urls
|
83 |
+
and mentions by special tokens.
|
84 |
+
|
85 |
+
strip_tashkeel(:obj:`bool`, `optional`, defaults to :obj:`True`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA,
|
86 |
+
KASRA, SUKUN, SHADDA).
|
87 |
+
|
88 |
+
strip_tatweel(:obj:`bool`, `optional`, defaults to :obj:`True`): remove tatweel '\\u0640'.
|
89 |
+
|
90 |
+
insert_white_spaces(:obj:`bool`, `optional`, defaults to :obj:`True`): insert whitespace before and after all non Arabic digits
|
91 |
+
or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace
|
92 |
+
between words and numbers or numbers and words.
|
93 |
+
|
94 |
+
remove_non_digit_repetition(:obj:`bool`, `optional`, defaults to :obj:`True`): replace repetition of more than 2 non-digit character with
|
95 |
+
2 of this character.
|
96 |
+
|
97 |
+
replace_slash_with_dash(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in AraBERTv02,
|
98 |
+
AraELECTRA and AraGPT2.
|
99 |
+
Set to False to force disable, and True to force enable. Replaces the "/" with "-",
|
100 |
+
since "/" is missing from AraBERTv2, AraELECTRA and ARAGPT2 vocabulary.
|
101 |
+
|
102 |
+
map_hindi_numbers_to_arabic(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in
|
103 |
+
AraBERTv02, AraELECTRA and AraGPT2.Set to False to force disable, and True to force enable.
|
104 |
+
Replaces hindi numbers with the corresponding Arabic one. ex: "١٩٩٥" --> "1995".
|
105 |
+
This is behavior is present by default in AraBERTv1 and v2 (with pre-segmentation),
|
106 |
+
and fixes the issue of caused by a bug when inserting white spaces.
|
107 |
+
|
108 |
+
apply_farasa_segmentation(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in
|
109 |
+
AraBERTv2, and AraBERTv1. Set to False to force disable, and True to force enable.
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
|
115 |
+
ArabertPreprocessor: A preprocessor instance
|
116 |
+
|
117 |
+
Example:
|
118 |
+
|
119 |
+
from preprocess import ArabertPreprocessor
|
120 |
+
|
121 |
+
arabert_prep = ArabertPreprocessor("aubmindlab/bert-base-arabertv2")
|
122 |
+
|
123 |
+
arabert_prep.preprocess("SOME ARABIC TEXT")
|
124 |
+
"""
|
125 |
+
|
126 |
+
def __init__(
|
127 |
+
self,
|
128 |
+
model_name: str,
|
129 |
+
keep_emojis: bool = False,
|
130 |
+
remove_html_markup: bool = True,
|
131 |
+
replace_urls_emails_mentions: bool = True,
|
132 |
+
strip_tashkeel: bool = True,
|
133 |
+
strip_tatweel: bool = True,
|
134 |
+
insert_white_spaces: bool = True,
|
135 |
+
remove_non_digit_repetition: bool = True,
|
136 |
+
replace_slash_with_dash: bool = None,
|
137 |
+
map_hindi_numbers_to_arabic: bool = None,
|
138 |
+
apply_farasa_segmentation: bool = None,
|
139 |
+
):
|
140 |
+
|
141 |
+
model_name = model_name.replace("aubmindlab/", "").replace("wissamantoun/", "")
|
142 |
+
|
143 |
+
if model_name not in ACCEPTED_MODELS:
|
144 |
+
logging.warning(
|
145 |
+
"""Model provided is not in the accepted model list. Preprocessor will default to a base Arabic preprocessor"""
|
146 |
+
)
|
147 |
+
self.model_name = "bert-base-arabertv02"
|
148 |
+
else:
|
149 |
+
self.model_name = model_name
|
150 |
+
|
151 |
+
if apply_farasa_segmentation is None:
|
152 |
+
if self.model_name in SEGMENTED_MODELS:
|
153 |
+
self.apply_farasa_segmentation = True
|
154 |
+
else:
|
155 |
+
self.apply_farasa_segmentation = False
|
156 |
+
else:
|
157 |
+
if (
|
158 |
+
apply_farasa_segmentation == False
|
159 |
+
and self.model_name in SEGMENTED_MODELS
|
160 |
+
):
|
161 |
+
logging.warning(
|
162 |
+
"The selected model_name requires Farasa pre-segmentation, but apply_farasa_segmentation was set to False!"
|
163 |
+
)
|
164 |
+
|
165 |
+
self.apply_farasa_segmentation = apply_farasa_segmentation
|
166 |
+
|
167 |
+
self.keep_emojis = keep_emojis
|
168 |
+
self.remove_html_markup = remove_html_markup
|
169 |
+
self.replace_urls_emails_mentions = replace_urls_emails_mentions
|
170 |
+
self.strip_tashkeel = strip_tashkeel
|
171 |
+
self.strip_tatweel = strip_tatweel
|
172 |
+
self.insert_white_spaces = insert_white_spaces
|
173 |
+
self.remove_non_digit_repetition = remove_non_digit_repetition
|
174 |
+
|
175 |
+
if replace_slash_with_dash is None:
|
176 |
+
if self.model_name in SECOND_GEN_MODELS:
|
177 |
+
self.replace_slash_with_dash = True
|
178 |
+
else:
|
179 |
+
self.replace_slash_with_dash = False
|
180 |
+
else:
|
181 |
+
self.replace_slash_with_dash = replace_slash_with_dash
|
182 |
+
|
183 |
+
if map_hindi_numbers_to_arabic is None:
|
184 |
+
if self.model_name in SECOND_GEN_MODELS:
|
185 |
+
self.map_hindi_numbers_to_arabic = True
|
186 |
+
else:
|
187 |
+
self.map_hindi_numbers_to_arabic = False
|
188 |
+
else:
|
189 |
+
self.map_hindi_numbers_to_arabic = map_hindi_numbers_to_arabic
|
190 |
+
|
191 |
+
def preprocess(self, text: str) -> str:
|
192 |
+
"""
|
193 |
+
Preprocess takes an input text line an applies the same preprocessing used in AraBERT
|
194 |
+
pretraining, or according to settings
|
195 |
+
|
196 |
+
Args:
|
197 |
+
|
198 |
+
text (:obj:`str`): inout text string
|
199 |
+
|
200 |
+
Returns:
|
201 |
+
|
202 |
+
string: A preprocessed string depending on which model was selected
|
203 |
+
"""
|
204 |
+
if (
|
205 |
+
self.model_name == "bert-base-arabert"
|
206 |
+
or self.model_name == "bert-base-arabertv01"
|
207 |
+
):
|
208 |
+
return self._preprocess_v1(
|
209 |
+
text,
|
210 |
+
do_farasa_tokenization=self.apply_farasa_segmentation,
|
211 |
+
)
|
212 |
+
|
213 |
+
if self.model_name in SECOND_GEN_MODELS:
|
214 |
+
return self._preprocess_v2(text)
|
215 |
+
|
216 |
+
return self._preprocess_v3(text)
|
217 |
+
|
218 |
+
def unpreprocess(self, text: str, desegment: bool = True) -> str:
|
219 |
+
"""Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces.
|
220 |
+
The objective is to make the generated text of any model appear natural and not preprocessed.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
text (:obj:`str`): input text to be un-preprocessed
|
224 |
+
desegment (:obj:`bool`, optional): [whether or not to remove farasa pre-segmentation before]..
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
str: The unpreprocessed (and possibly Farasa-desegmented) text.
|
228 |
+
"""
|
229 |
+
|
230 |
+
if self.apply_farasa_segmentation and desegment:
|
231 |
+
text = self.desegment(text)
|
232 |
+
|
233 |
+
# removes the spaces around quotation marks ex: i " ate " an apple --> i "ate" an apple
|
234 |
+
# https://stackoverflow.com/a/53436792/5381220
|
235 |
+
text = re.sub(white_spaced_double_quotation_regex, '"' + r"\1" + '"', text)
|
236 |
+
text = re.sub(white_spaced_single_quotation_regex, "'" + r"\1" + "'", text)
|
237 |
+
text = re.sub(white_spaced_back_quotation_regex, "\`" + r"\1" + "\`", text)
|
238 |
+
text = re.sub(white_spaced_back_quotation_regex, "\—" + r"\1" + "\—", text)
|
239 |
+
|
240 |
+
# during generation, sometimes the models don't put a space after the dot, this handles it
|
241 |
+
text = text.replace(".", " . ")
|
242 |
+
text = " ".join(text.split())
|
243 |
+
|
244 |
+
# handle decimals
|
245 |
+
text = re.sub(r"(\d+) \. (\d+)", r"\1.\2", text)
|
246 |
+
text = re.sub(r"(\d+) \, (\d+)", r"\1,\2", text)
|
247 |
+
|
248 |
+
text = re.sub(left_and_right_spaced_chars, r"\1", text)
|
249 |
+
text = re.sub(left_spaced_chars, r"\1", text)
|
250 |
+
text = re.sub(right_spaced_chars, r"\1", text)
|
251 |
+
|
252 |
+
return text
|
253 |
+
|
254 |
+
def desegment(self, text: str) -> str:
|
255 |
+
"""
|
256 |
+
Use this function if sentence tokenization was done using
|
257 |
+
`from arabert.preprocess_arabert import preprocess` with Farasa enabled
|
258 |
+
AraBERT segmentation using Farasa adds a space after the '+' for prefixes,
|
259 |
+
and after before the '+' for suffixes
|
260 |
+
|
261 |
+
Example:
|
262 |
+
>>> desegment('ال+ دراس +ات')
|
263 |
+
الدراسات
|
264 |
+
"""
|
265 |
+
text = text.replace("+ ", "+")
|
266 |
+
text = text.replace(" +", "+")
|
267 |
+
text = " ".join([self._desegmentword(word) for word in text.split(" ")])
|
268 |
+
return text
|
269 |
+
|
270 |
+
def _desegmentword(self, orig_word: str) -> str:
|
271 |
+
"""
|
272 |
+
Word segmentor that takes a Farasa Segmented Word and removes the '+' signs
|
273 |
+
|
274 |
+
Example:
|
275 |
+
>>> _desegmentword("ال+يومي+ة")
|
276 |
+
اليومية
|
277 |
+
"""
|
278 |
+
word = orig_word.replace("ل+ال+", "لل")
|
279 |
+
if "ال+ال" not in orig_word:
|
280 |
+
word = word.replace("ل+ال", "لل")
|
281 |
+
word = word.replace("+", "")
|
282 |
+
word = word.replace("للل", "لل")
|
283 |
+
return word
|
284 |
+
|
285 |
+
def _preprocess_v3(self, text: str) -> str:
|
286 |
+
text = str(text)
|
287 |
+
text = html.unescape(text)
|
288 |
+
if self.strip_tashkeel:
|
289 |
+
text = araby.strip_tashkeel(text)
|
290 |
+
if self.strip_tatweel:
|
291 |
+
text = araby.strip_tatweel(text)
|
292 |
+
|
293 |
+
if self.replace_urls_emails_mentions:
|
294 |
+
# replace all possible URLs
|
295 |
+
for reg in url_regexes:
|
296 |
+
text = re.sub(reg, " [رابط] ", text)
|
297 |
+
# REplace Emails with [بريد]
|
298 |
+
for reg in email_regexes:
|
299 |
+
text = re.sub(reg, " [بريد] ", text)
|
300 |
+
# replace mentions with [مستخدم]
|
301 |
+
text = re.sub(user_mention_regex, " [مستخدم] ", text)
|
302 |
+
|
303 |
+
if self.remove_html_markup:
|
304 |
+
# remove html line breaks
|
305 |
+
text = re.sub("<br />", " ", text)
|
306 |
+
# remove html markup
|
307 |
+
text = re.sub("</?[^>]+>", " ", text)
|
308 |
+
|
309 |
+
if self.map_hindi_numbers_to_arabic:
|
310 |
+
text = text.translate(hindi_to_arabic_map)
|
311 |
+
|
312 |
+
# remove repeated characters >2
|
313 |
+
if self.remove_non_digit_repetition:
|
314 |
+
text = self._remove_non_digit_repetition(text)
|
315 |
+
|
316 |
+
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
|
317 |
+
if self.insert_white_spaces:
|
318 |
+
text = re.sub(
|
319 |
+
"([^0-9\u0621-\u063A\u0641-\u064A\u0660-\u0669a-zA-Z ])",
|
320 |
+
r" \1 ",
|
321 |
+
text,
|
322 |
+
)
|
323 |
+
|
324 |
+
# re-fix brackets
|
325 |
+
text = text.replace("[ رابط ]", "[رابط]")
|
326 |
+
text = text.replace("[ بريد ]", "[بريد]")
|
327 |
+
text = text.replace("[ مستخدم ]", "[مستخدم]")
|
328 |
+
|
329 |
+
# insert whitespace between words and numbers or numbers and words
|
330 |
+
text = re.sub(
|
331 |
+
"(\d+)([\u0621-\u063A\u0641-\u064A\u066A-\u066C\u0654-\u0655]+)",
|
332 |
+
r" \1 \2 ",
|
333 |
+
text,
|
334 |
+
)
|
335 |
+
text = re.sub(
|
336 |
+
"([\u0621-\u063A\u0641-\u064A\u066A-\u066C\u0654-\u0655]+)(\d+)",
|
337 |
+
r" \1 \2 ",
|
338 |
+
text,
|
339 |
+
)
|
340 |
+
|
341 |
+
# remove unwanted characters
|
342 |
+
if self.keep_emojis:
|
343 |
+
emoji_regex = "".join(list(emoji.UNICODE_EMOJI["en"].keys()))
|
344 |
+
rejected_chars_regex2 = "[^%s%s]" % (chars_regexv2, emoji_regex)
|
345 |
+
text = re.sub(rejected_chars_regex2, " ", text)
|
346 |
+
else:
|
347 |
+
text = re.sub(rejected_chars_regexv2, " ", text)
|
348 |
+
|
349 |
+
# remove extra spaces
|
350 |
+
text = " ".join(text.replace("\uFE0F", "").split())
|
351 |
+
|
352 |
+
if self.apply_farasa_segmentation:
|
353 |
+
if self.keep_emojis:
|
354 |
+
new_text = []
|
355 |
+
for word in text.split():
|
356 |
+
if word in list(emoji.UNICODE_EMOJI["en"].keys()):
|
357 |
+
new_text.append(word)
|
358 |
+
else:
|
359 |
+
new_text.append(farasa_segmenter.segment(word))
|
360 |
+
text = " ".join(new_text)
|
361 |
+
else:
|
362 |
+
text = farasa_segmenter.segment(text)
|
363 |
+
return self._farasa_segment(text)
|
364 |
+
|
365 |
+
# ALl the other models dont require Farasa Segmentation
|
366 |
+
return text
|
367 |
+
|
368 |
+
def _preprocess_v2(self, text: str) -> str:
|
369 |
+
text = str(text)
|
370 |
+
text = html.unescape(text)
|
371 |
+
if self.strip_tashkeel:
|
372 |
+
text = araby.strip_tashkeel(text)
|
373 |
+
if self.strip_tatweel:
|
374 |
+
text = araby.strip_tatweel(text)
|
375 |
+
|
376 |
+
if self.replace_urls_emails_mentions:
|
377 |
+
# replace all possible URLs
|
378 |
+
for reg in url_regexes:
|
379 |
+
text = re.sub(reg, " [رابط] ", text)
|
380 |
+
# REplace Emails with [بريد]
|
381 |
+
for reg in email_regexes:
|
382 |
+
text = re.sub(reg, " [بريد] ", text)
|
383 |
+
# replace mentions with [مستخدم]
|
384 |
+
text = re.sub(user_mention_regex, " [مستخدم] ", text)
|
385 |
+
|
386 |
+
if self.remove_html_markup:
|
387 |
+
# remove html line breaks
|
388 |
+
text = re.sub("<br />", " ", text)
|
389 |
+
# remove html markup
|
390 |
+
text = re.sub("</?[^>]+>", " ", text)
|
391 |
+
|
392 |
+
if self.map_hindi_numbers_to_arabic:
|
393 |
+
text = text.translate(hindi_to_arabic_map)
|
394 |
+
|
395 |
+
# remove repeated characters >2
|
396 |
+
if self.remove_non_digit_repetition:
|
397 |
+
text = self._remove_non_digit_repetition(text)
|
398 |
+
|
399 |
+
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
|
400 |
+
if self.insert_white_spaces:
|
401 |
+
text = re.sub(
|
402 |
+
"([^0-9\u0621-\u063A\u0641-\u064A\u0660-\u0669a-zA-Z\[\]])",
|
403 |
+
r" \1 ",
|
404 |
+
text,
|
405 |
+
)
|
406 |
+
|
407 |
+
# insert whitespace between words and numbers or numbers and words
|
408 |
+
text = re.sub(
|
409 |
+
"(\d+)([\u0621-\u063A\u0641-\u064A\u0660-\u066C]+)", r" \1 \2 ", text
|
410 |
+
)
|
411 |
+
text = re.sub(
|
412 |
+
"([\u0621-\u063A\u0641-\u064A\u0660-\u066C]+)(\d+)", r" \1 \2 ", text
|
413 |
+
)
|
414 |
+
|
415 |
+
if self.replace_slash_with_dash:
|
416 |
+
text = text.replace("/", "-")
|
417 |
+
|
418 |
+
# remove unwanted characters
|
419 |
+
if self.keep_emojis:
|
420 |
+
emoji_regex = "".join(list(emoji.UNICODE_EMOJI["en"].keys()))
|
421 |
+
rejected_chars_regex2 = "[^%s%s]" % (chars_regex, emoji_regex)
|
422 |
+
text = re.sub(rejected_chars_regex2, " ", text)
|
423 |
+
else:
|
424 |
+
text = re.sub(rejected_chars_regex, " ", text)
|
425 |
+
|
426 |
+
# remove extra spaces
|
427 |
+
text = " ".join(text.replace("\uFE0F", "").split())
|
428 |
+
|
429 |
+
if (
|
430 |
+
self.model_name == "bert-base-arabertv2"
|
431 |
+
or self.model_name == "bert-large-arabertv2"
|
432 |
+
):
|
433 |
+
if self.keep_emojis:
|
434 |
+
new_text = []
|
435 |
+
for word in text.split():
|
436 |
+
if word in list(emoji.UNICODE_EMOJI["en"].keys()):
|
437 |
+
new_text.append(word)
|
438 |
+
else:
|
439 |
+
new_text.append(farasa_segmenter.segment(word))
|
440 |
+
text = " ".join(new_text)
|
441 |
+
else:
|
442 |
+
text = farasa_segmenter.segment(text)
|
443 |
+
return self._farasa_segment(text)
|
444 |
+
|
445 |
+
# ALl the other models dont require Farasa Segmentation
|
446 |
+
return text
|
447 |
+
|
448 |
+
def _preprocess_v1(self, text: str, do_farasa_tokenization: bool) -> str:
|
449 |
+
"""
|
450 |
+
AraBERTv1 preprocessing Function
|
451 |
+
"""
|
452 |
+
text = str(text)
|
453 |
+
if self.strip_tashkeel:
|
454 |
+
text = araby.strip_tashkeel(text)
|
455 |
+
|
456 |
+
text = re.sub(r"\d+\/[ء-ي]+\/\d+\]", "", text)
|
457 |
+
text = re.sub("ـ", "", text)
|
458 |
+
text = re.sub("[«»]", ' " ', text)
|
459 |
+
|
460 |
+
if self.replace_urls_emails_mentions:
|
461 |
+
# replace the [رابط] token with space if you want to clean links
|
462 |
+
text = re.sub(regex_url_step1, "[رابط]", text)
|
463 |
+
text = re.sub(regex_url_step2, "[رابط]", text)
|
464 |
+
text = re.sub(regex_url, "[رابط]", text)
|
465 |
+
text = re.sub(regex_email, "[بريد]", text)
|
466 |
+
text = re.sub(regex_mention, "[مستخدم]", text)
|
467 |
+
text = re.sub("…", r"\.", text).strip()
|
468 |
+
text = self._remove_redundant_punct(text)
|
469 |
+
|
470 |
+
if self.replace_urls_emails_mentions:
|
471 |
+
text = re.sub(r"\[ رابط \]|\[ رابط\]|\[رابط \]", " [رابط] ", text)
|
472 |
+
text = re.sub(r"\[ بريد \]|\[ بريد\]|\[بريد \]", " [بريد] ", text)
|
473 |
+
text = re.sub(r"\[ مستخدم \]|\[ مستخدم\]|\[مستخدم \]", " [مستخدم] ", text)
|
474 |
+
|
475 |
+
if self.remove_non_digit_repetition:
|
476 |
+
text = self._remove_non_digit_repetition(text)
|
477 |
+
|
478 |
+
if self.insert_white_spaces:
|
479 |
+
text = re.sub(
|
480 |
+
"([^0-9\u0621-\u063A\u0641-\u0669\u0671-\u0673a-zA-Z\[\]])",
|
481 |
+
r" \1 ",
|
482 |
+
text,
|
483 |
+
)
|
484 |
+
if do_farasa_tokenization:
|
485 |
+
text = self._tokenize_arabic_words_farasa(text)
|
486 |
+
|
487 |
+
text = " ".join(text.split())
|
488 |
+
|
489 |
+
return text
|
490 |
+
|
491 |
+
def _farasa_segment(self, text: str) -> str:
|
492 |
+
line_farasa = text.split()
|
493 |
+
segmented_line = []
|
494 |
+
for index, word in enumerate(line_farasa):
|
495 |
+
if word in ["[", "]"]:
|
496 |
+
continue
|
497 |
+
if word in ["رابط", "بريد", "مستخدم"] and line_farasa[index - 1] in [
|
498 |
+
"[",
|
499 |
+
"]",
|
500 |
+
]:
|
501 |
+
segmented_line.append("[" + word + "]")
|
502 |
+
continue
|
503 |
+
if "+" not in word:
|
504 |
+
segmented_line.append(word)
|
505 |
+
continue
|
506 |
+
segmented_word = self._split_farasa_output(word)
|
507 |
+
segmented_line.extend(segmented_word)
|
508 |
+
|
509 |
+
return " ".join(segmented_line)
|
510 |
+
|
511 |
+
def _split_farasa_output(self, word: str) -> str:
|
512 |
+
segmented_word = []
|
513 |
+
temp_token = ""
|
514 |
+
for i, c in enumerate(word):
|
515 |
+
if c == "+":
|
516 |
+
# if the token is KAF, it could be a suffix or prefix
|
517 |
+
if temp_token == "ك":
|
518 |
+
# if we are at the second token, then KAF is surely a prefix
|
519 |
+
if i == 1:
|
520 |
+
segmented_word.append(temp_token + "+")
|
521 |
+
temp_token = ""
|
522 |
+
# If the KAF token is between 2 tokens
|
523 |
+
elif word[i - 2] == "+":
|
524 |
+
# if the previous token is prefix, then this KAF must be a prefix
|
525 |
+
if segmented_word[-1][-1] == "+":
|
526 |
+
segmented_word.append(temp_token + "+")
|
527 |
+
temp_token = ""
|
528 |
+
# else it is a suffix, this KAF could not be a second suffix
|
529 |
+
else:
|
530 |
+
segmented_word.append("+" + temp_token)
|
531 |
+
temp_token = ""
|
532 |
+
# if Kaf is at the end, this is handled with the statement after the loop
|
533 |
+
elif temp_token in prefix_list:
|
534 |
+
segmented_word.append(temp_token + "+")
|
535 |
+
temp_token = ""
|
536 |
+
elif temp_token in suffix_list:
|
537 |
+
segmented_word.append("+" + temp_token)
|
538 |
+
temp_token = ""
|
539 |
+
else:
|
540 |
+
segmented_word.append(temp_token)
|
541 |
+
temp_token = ""
|
542 |
+
continue
|
543 |
+
temp_token += c
|
544 |
+
if temp_token != "":
|
545 |
+
if temp_token in suffix_list:
|
546 |
+
segmented_word.append("+" + temp_token)
|
547 |
+
else:
|
548 |
+
segmented_word.append(temp_token)
|
549 |
+
return segmented_word
|
550 |
+
|
551 |
+
def _tokenize_arabic_words_farasa(self, line_input: str) -> str:
|
552 |
+
|
553 |
+
if self.keep_emojis:
|
554 |
+
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
|
555 |
+
line_farasa = []
|
556 |
+
for word in line_input.split():
|
557 |
+
if word in list(emoji.UNICODE_EMOJI["en"].keys()):
|
558 |
+
line_farasa.append(word)
|
559 |
+
else:
|
560 |
+
line_farasa.append(farasa_segmenter.segment(word))
|
561 |
+
else:
|
562 |
+
line_farasa = farasa_segmenter.segment(line_input).split()
|
563 |
+
|
564 |
+
segmented_line = []
|
565 |
+
for index, word in enumerate(line_farasa):
|
566 |
+
if word in ["[", "]"]:
|
567 |
+
continue
|
568 |
+
if word in ["رابط", "بريد", "مستخدم"] and line_farasa[index - 1] in [
|
569 |
+
"[",
|
570 |
+
"]",
|
571 |
+
]:
|
572 |
+
segmented_line.append("[" + word + "]")
|
573 |
+
continue
|
574 |
+
segmented_word = []
|
575 |
+
for token in word.split("+"):
|
576 |
+
if token in prefix_list:
|
577 |
+
segmented_word.append(token + "+")
|
578 |
+
elif token in suffix_list:
|
579 |
+
segmented_word.append("+" + token)
|
580 |
+
else:
|
581 |
+
segmented_word.append(token)
|
582 |
+
segmented_line.extend(segmented_word)
|
583 |
+
return " ".join(segmented_line)
|
584 |
+
|
585 |
+
def _remove_non_digit_repetition(self, text: str) -> str:
|
586 |
+
"""
|
587 |
+
:param text: the input text to remove elongation
|
588 |
+
:return: delongated text
|
589 |
+
"""
|
590 |
+
# loop over the number of times the regex matched the text
|
591 |
+
# OLD
|
592 |
+
# for index_ in range(len(re.findall(regex_tatweel, text))):
|
593 |
+
# elongation = re.search(regex_tatweel, text)
|
594 |
+
# if elongation:
|
595 |
+
# elongation_pattern = elongation.group()
|
596 |
+
# elongation_replacement = elongation_pattern[0]
|
597 |
+
# elongation_pattern = re.escape(elongation_pattern)
|
598 |
+
# text = re.sub(
|
599 |
+
# elongation_pattern, elongation_replacement, text, flags=re.MULTILINE
|
600 |
+
# )
|
601 |
+
# else:
|
602 |
+
# break
|
603 |
+
|
604 |
+
# New
|
605 |
+
text = multiple_char_pattern.sub(r"\1\1", text)
|
606 |
+
return text
|
607 |
+
|
608 |
+
def _remove_redundant_punct(self, text: str) -> str:
|
609 |
+
text_ = text
|
610 |
+
result = re.search(redundant_punct_pattern, text)
|
611 |
+
dif = 0
|
612 |
+
while result:
|
613 |
+
sub = result.group()
|
614 |
+
sub = sorted(set(sub), key=sub.index)
|
615 |
+
sub = " " + "".join(list(sub)) + " "
|
616 |
+
text = "".join(
|
617 |
+
(text[: result.span()[0] + dif], sub, text[result.span()[1] + dif :])
|
618 |
+
)
|
619 |
+
text_ = "".join(
|
620 |
+
(text_[: result.span()[0]], text_[result.span()[1] :])
|
621 |
+
).strip()
|
622 |
+
dif = abs(len(text) - len(text_))
|
623 |
+
result = re.search(redundant_punct_pattern, text_)
|
624 |
+
text = re.sub(r"\s+", " ", text)
|
625 |
+
return text.strip()
|
626 |
+
|
627 |
+
|
628 |
+
prefix_list = [
|
629 |
+
"ال",
|
630 |
+
"و",
|
631 |
+
"ف",
|
632 |
+
"ب",
|
633 |
+
"ك",
|
634 |
+
"ل",
|
635 |
+
"لل",
|
636 |
+
"\u0627\u0644",
|
637 |
+
"\u0648",
|
638 |
+
"\u0641",
|
639 |
+
"\u0628",
|
640 |
+
"\u0643",
|
641 |
+
"\u0644",
|
642 |
+
"\u0644\u0644",
|
643 |
+
"س",
|
644 |
+
]
|
645 |
+
suffix_list = [
|
646 |
+
"ه",
|
647 |
+
"ها",
|
648 |
+
"ك",
|
649 |
+
"ي",
|
650 |
+
"هما",
|
651 |
+
"كما",
|
652 |
+
"نا",
|
653 |
+
"كم",
|
654 |
+
"هم",
|
655 |
+
"هن",
|
656 |
+
"كن",
|
657 |
+
"ا",
|
658 |
+
"ان",
|
659 |
+
"ين",
|
660 |
+
"ون",
|
661 |
+
"وا",
|
662 |
+
"ات",
|
663 |
+
"ت",
|
664 |
+
"ن",
|
665 |
+
"ة",
|
666 |
+
"\u0647",
|
667 |
+
"\u0647\u0627",
|
668 |
+
"\u0643",
|
669 |
+
"\u064a",
|
670 |
+
"\u0647\u0645\u0627",
|
671 |
+
"\u0643\u0645\u0627",
|
672 |
+
"\u0646\u0627",
|
673 |
+
"\u0643\u0645",
|
674 |
+
"\u0647\u0645",
|
675 |
+
"\u0647\u0646",
|
676 |
+
"\u0643\u0646",
|
677 |
+
"\u0627",
|
678 |
+
"\u0627\u0646",
|
679 |
+
"\u064a\u0646",
|
680 |
+
"\u0648\u0646",
|
681 |
+
"\u0648\u0627",
|
682 |
+
"\u0627\u062a",
|
683 |
+
"\u062a",
|
684 |
+
"\u0646",
|
685 |
+
"\u0629",
|
686 |
+
]
|
687 |
+
other_tokens = ["[رابط]", "[مستخدم]", "[بريد]"]
|
688 |
+
|
689 |
+
# the never_split list is ussed with the transformers library
|
690 |
+
prefix_symbols = [x + "+" for x in prefix_list]
|
691 |
+
suffix_symblos = ["+" + x for x in suffix_list]
|
692 |
+
never_split_tokens = list(set(prefix_symbols + suffix_symblos + other_tokens))
|
693 |
+
|
694 |
+
url_regexes = [
|
695 |
+
r"(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)",
|
696 |
+
r"@(https?|ftp)://(-\.)?([^\s/?\.#-]+\.?)+(/[^\s]*)?$@iS",
|
697 |
+
r"http[s]?://[a-zA-Z0-9_\-./~\?=%&]+",
|
698 |
+
r"www[a-zA-Z0-9_\-?=%&/.~]+",
|
699 |
+
r"[a-zA-Z]+\.com",
|
700 |
+
r"(?=http)[^\s]+",
|
701 |
+
r"(?=www)[^\s]+",
|
702 |
+
r"://",
|
703 |
+
]
|
704 |
+
user_mention_regex = r"@[\w\d]+"
|
705 |
+
email_regexes = [r"[\w-]+@([\w-]+\.)+[\w-]+", r"\S+@\S+"]
|
706 |
+
redundant_punct_pattern = (
|
707 |
+
r"([!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ【»؛\s+«–…‘]{2,})"
|
708 |
+
)
|
709 |
+
|
710 |
+
regex_tatweel = r"(\D)\1{2,}"
|
711 |
+
multiple_char_pattern = re.compile(r"(\D)\1{2,}", re.DOTALL)
|
712 |
+
|
713 |
+
rejected_chars_regex = r"[^0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘]"
|
714 |
+
rejected_chars_regexv2 = r"[^0-9\u0621-\u063A\u0641-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘/]"
|
715 |
+
|
716 |
+
regex_url_step1 = r"(?=http)[^\s]+"
|
717 |
+
regex_url_step2 = r"(?=www)[^\s]+"
|
718 |
+
regex_url = r"(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)"
|
719 |
+
regex_mention = r"@[\w\d]+"
|
720 |
+
regex_email = r"\S+@\S+"
|
721 |
+
|
722 |
+
chars_regex = r"0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘"
|
723 |
+
chars_regexv2 = r"0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘/"
|
724 |
+
|
725 |
+
white_spaced_double_quotation_regex = r'\"\s+([^"]+)\s+\"'
|
726 |
+
white_spaced_single_quotation_regex = r"\'\s+([^']+)\s+\'"
|
727 |
+
white_spaced_back_quotation_regex = r"\`\s+([^`]+)\s+\`"
|
728 |
+
white_spaced_em_dash = r"\—\s+([^—]+)\s+\—"
|
729 |
+
|
730 |
+
left_spaced_chars = r" ([\]!#\$%\),\.:;\?}٪’،؟”؛…»·])"
|
731 |
+
right_spaced_chars = r"([\[\(\{“«‘*\~]) "
|
732 |
+
left_and_right_spaced_chars = r" ([\+\-\<\=\>\@\\\^\_\|\–]) "
|
733 |
+
|
734 |
+
hindi_nums = "٠١٢٣٤٥٦٧٨٩"
|
735 |
+
arabic_nums = "0123456789"
|
736 |
+
hindi_to_arabic_map = str.maketrans(hindi_nums, arabic_nums)
|
pages/processor.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import awesome_streamlit as ast
|
3 |
+
from .preprocess import (
|
4 |
+
ArabertPreprocessor,
|
5 |
+
white_spaced_back_quotation_regex,
|
6 |
+
white_spaced_double_quotation_regex,
|
7 |
+
white_spaced_em_dash,
|
8 |
+
white_spaced_single_quotation_regex,
|
9 |
+
left_and_right_spaced_chars,
|
10 |
+
left_spaced_chars,
|
11 |
+
right_spaced_chars,
|
12 |
+
)
|
13 |
+
import re
|
14 |
+
|
15 |
+
MODELS_to_SELECT = [
|
16 |
+
"None",
|
17 |
+
"bert-base-arabertv01",
|
18 |
+
"bert-base-arabert",
|
19 |
+
"bert-base-arabertv02",
|
20 |
+
"bert-base-arabertv2",
|
21 |
+
"bert-large-arabertv02",
|
22 |
+
"bert-large-arabertv2",
|
23 |
+
"araelectra-base",
|
24 |
+
"araelectra-base-discriminator",
|
25 |
+
"araelectra-base-generator",
|
26 |
+
"araelectra-base-artydiqa",
|
27 |
+
"aragpt2-base",
|
28 |
+
"aragpt2-medium",
|
29 |
+
"aragpt2-large",
|
30 |
+
"aragpt2-mega",
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
def unpreprocess(text: str) -> str:
|
35 |
+
"""Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces.
|
36 |
+
The objective is to make the generated text of any model appear natural and not preprocessed.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
text (:obj:`str`): input text to be un-preprocessed
|
40 |
+
desegment (:obj:`bool`, optional): [whether or not to remove farasa pre-segmentation before]..
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
str: The unpreprocessed (and possibly Farasa-desegmented) text.
|
44 |
+
"""
|
45 |
+
|
46 |
+
text = desegment(text)
|
47 |
+
|
48 |
+
# removes the spaces around quotation marks ex: i " ate " an apple --> i "ate" an apple
|
49 |
+
# https://stackoverflow.com/a/53436792/5381220
|
50 |
+
text = re.sub(white_spaced_double_quotation_regex, '"' + r"\1" + '"', text)
|
51 |
+
text = re.sub(white_spaced_single_quotation_regex, "'" + r"\1" + "'", text)
|
52 |
+
text = re.sub(white_spaced_back_quotation_regex, "\`" + r"\1" + "\`", text)
|
53 |
+
text = re.sub(white_spaced_back_quotation_regex, "\—" + r"\1" + "\—", text)
|
54 |
+
|
55 |
+
# during generation, sometimes the models don't put a space after the dot, this handles it
|
56 |
+
text = text.replace(".", " . ")
|
57 |
+
text = " ".join(text.split())
|
58 |
+
|
59 |
+
# handle decimals
|
60 |
+
text = re.sub(r"(\d+) \. (\d+)", r"\1.\2", text)
|
61 |
+
text = re.sub(r"(\d+) \, (\d+)", r"\1,\2", text)
|
62 |
+
|
63 |
+
text = re.sub(left_and_right_spaced_chars, r"\1", text)
|
64 |
+
text = re.sub(left_spaced_chars, r"\1", text)
|
65 |
+
text = re.sub(right_spaced_chars, r"\1", text)
|
66 |
+
|
67 |
+
return text
|
68 |
+
|
69 |
+
|
70 |
+
def desegment(text: str) -> str:
|
71 |
+
"""
|
72 |
+
Use this function if sentence tokenization was done using
|
73 |
+
`from arabert.preprocess_arabert import preprocess` with Farasa enabled
|
74 |
+
AraBERT segmentation using Farasa adds a space after the '+' for prefixes,
|
75 |
+
and after before the '+' for suffixes
|
76 |
+
|
77 |
+
Example:
|
78 |
+
>>> desegment('ال+ دراس +ات')
|
79 |
+
الدراسات
|
80 |
+
"""
|
81 |
+
text = text.replace("+ ", "+")
|
82 |
+
text = text.replace(" +", "+")
|
83 |
+
text = " ".join([_desegmentword(word) for word in text.split(" ")])
|
84 |
+
return text
|
85 |
+
|
86 |
+
|
87 |
+
def _desegmentword(orig_word: str) -> str:
|
88 |
+
"""
|
89 |
+
Word segmentor that takes a Farasa Segmented Word and removes the '+' signs
|
90 |
+
|
91 |
+
Example:
|
92 |
+
>>> _desegmentword("ال+يومي+ة")
|
93 |
+
اليومية
|
94 |
+
"""
|
95 |
+
word = orig_word.replace("ل+ال+", "لل")
|
96 |
+
if "ال+ال" not in orig_word:
|
97 |
+
word = word.replace("ل+ال", "لل")
|
98 |
+
word = word.replace("+", "")
|
99 |
+
word = word.replace("للل", "لل")
|
100 |
+
return word
|
101 |
+
|
102 |
+
|
103 |
+
def write():
|
104 |
+
col1, _ = st.columns(2)
|
105 |
+
|
106 |
+
with col1:
|
107 |
+
col1.title("Arabic Text Pre-Processor")
|
108 |
+
st.markdown(
|
109 |
+
"""
|
110 |
+
<style>
|
111 |
+
p, div, input, label {
|
112 |
+
text-align: right;
|
113 |
+
}
|
114 |
+
</style>
|
115 |
+
""",
|
116 |
+
unsafe_allow_html=True,
|
117 |
+
)
|
118 |
+
input_text = st.text_input(
|
119 |
+
"Text to Pre-Process",
|
120 |
+
value="ولن نبالغ إذا قلنا: إن 'هاتف' أو 'كمبيوتر المكتب' في زمننا هذا ضروري",
|
121 |
+
)
|
122 |
+
|
123 |
+
aligning_cols = st.columns(5)
|
124 |
+
model_selector = aligning_cols[0].selectbox("Model", options=MODELS_to_SELECT)
|
125 |
+
aligning_cols[1].write("#")
|
126 |
+
aligning_cols[1].write("Select None to enable further filters")
|
127 |
+
if model_selector == "None":
|
128 |
+
cols = st.columns(5)
|
129 |
+
keep_emojis = cols[0].checkbox("Keep emojis", False)
|
130 |
+
remove_html_markup = cols[0].checkbox("Remove html markup", True)
|
131 |
+
strip_tashkeel = cols[1].checkbox("Strip tashkeel", True)
|
132 |
+
replace_urls_emails_mentions = cols[1].checkbox("Replace urls and emails", True)
|
133 |
+
strip_tatweel = cols[2].checkbox("Strip tatweel", True)
|
134 |
+
insert_white_spaces = cols[2].checkbox("Insert white spaces", True)
|
135 |
+
remove_non_digit_repetition = cols[3].checkbox(
|
136 |
+
"Remove non-digit repetition", True
|
137 |
+
)
|
138 |
+
replace_slash_with_dash = cols[3].checkbox("Replace slash with dash", None)
|
139 |
+
map_hindi_numbers_to_arabic = cols[4].checkbox(
|
140 |
+
"Map hindi numbers to arabic", None
|
141 |
+
)
|
142 |
+
apply_farasa_segmentation = cols[4].checkbox("Apply farasa segmentation", None)
|
143 |
+
|
144 |
+
run_preprocessor = st.button("Run Pre-Processor")
|
145 |
+
|
146 |
+
prep_text = None
|
147 |
+
if run_preprocessor:
|
148 |
+
if model_selector == "None":
|
149 |
+
arabert_preprocessor = ArabertPreprocessor(
|
150 |
+
model_selector,
|
151 |
+
keep_emojis,
|
152 |
+
remove_html_markup,
|
153 |
+
replace_urls_emails_mentions,
|
154 |
+
strip_tashkeel,
|
155 |
+
strip_tatweel,
|
156 |
+
insert_white_spaces,
|
157 |
+
remove_non_digit_repetition,
|
158 |
+
replace_slash_with_dash,
|
159 |
+
map_hindi_numbers_to_arabic,
|
160 |
+
apply_farasa_segmentation,
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
arabert_preprocessor = ArabertPreprocessor(model_name=model_selector)
|
164 |
+
prep_text = arabert_preprocessor._preprocess_v3(input_text)
|
165 |
+
st.write(prep_text)
|
166 |
+
|
167 |
+
st.write("-----")
|
168 |
+
input_text_unprep = st.text_input(
|
169 |
+
"Text to Undo the Pre-Processing",
|
170 |
+
value=prep_text
|
171 |
+
if prep_text
|
172 |
+
else "و+ لن نبالغ إذا قل +نا : إن ' هاتف ' أو ' كمبيوتر ال+ مكتب ' في زمن +نا هذا ضروري",
|
173 |
+
)
|
174 |
+
run_unpreprocessor = st.button("Run Un-Pre-Processor")
|
175 |
+
|
176 |
+
if run_unpreprocessor:
|
177 |
+
st.write(unpreprocess(input_text_unprep))
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==0.88
|
2 |
+
arabic-reshaper==2.1.3
|
3 |
+
python-bidi==0.4.2
|
4 |
+
PyArabic
|
5 |
+
farasapy==0.0.14
|
6 |
+
emoji==1.4.2
|