shisa / app.py
leonardlin's picture
switch to pipelines
5835e21
raw
history blame
2.29 kB
# https://www.gradio.app/guides/using-hugging-face-integrations
import gradio as gr
from transformers import pipeline, Conversation
model = "mistralai/Mistral-7B-Instruct-v0.1"
model = "TinyLlama/TinyLlama-1.1B-Chat-v0.3"
title = "Shisa 7B"
description = "Test out Shisa 7B in either English or Japanese."
placeholder = "Type Here / ここにε…₯εŠ›γ—γ¦γγ γ•γ„"
examples = [
"Hello, how are you?",
"γ“γ‚“γ«γ‘γ―γ€ε…ƒζ°—γ§γ™γ‹οΌŸ",
"γŠγ£γ™γ€ε…ƒζ°—οΌŸ",
"γ“γ‚“γ«γ‘γ―γ€γ„γ‹γŒγŠιŽγ”γ—γ§γ™γ‹οΌŸ",
]
# Docs: https://github.com/huggingface/transformers/blob/main/src/transformers/pipelines/conversational.py
conversation = Conversation()
chatbot = pipeline('conversational', model)
'''
conversation = Conversation("Going to the movies tonight - any suggestions?")
conversation.add_message({"role": "assistant", "content": "The Big lebowski."})
conversation.add_message({"role": "user", "content": "Is it good?"})
conversation.messages[:-1]
'''
def chat(input, history=[]):
conversation.add_message({"role": "user", "content": input})
# we do this shuffle so local shadow response doesn't get created
response_conversation = chatbot(conversation)
print(response_conversation)
print(response_conversation.messages)
print(response_conversation.messages[-1]["content"])
conversation.add_message(response_conversation.messages[-1])
response = conversation.messages[-1]["content"]
return response, history
gr.ChatInterface(
chat,
chatbot=gr.Chatbot(height=400),
textbox=gr.Textbox(placeholder=placeholder, container=False, scale=7),
title=title,
description=description,
theme="soft",
examples=examples,
cache_examples=False,
undo_btn="Delete Previous",
clear_btn="Clear",
).launch()
'''
gr.Interface.load(
"EleutherAI/gpt-j-6B",
inputs=gr.Textbox(lines=5, label="Input Text"),
title=title,
description=description,
article=article,
).launch()
# Doesn't support conversational pipelin
pipe = pipeline('conversational', model)
gr.Interface.from_pipeline(pipe).launch()
'''
# For async
# ).queue().launch()
'''
# Pipeline doesn't support conversational...
pipe = pipeline("conversational", model=model)
demo = gr.Interface.from_pipeline(pipe)
'''