# https://www.gradio.app/guides/using-hugging-face-integrations from transformers import pipeline import gradio as gr pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") demo = gr.Interface.from_pipeline(pipe) demo.launch() """ from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr import torch model = "mistralai/Mistral-7B-Instruct-v0.1" model = "TinyLlama/TinyLlama-1.1B-Chat-v0.3" # Gradio title = "Shisa 7B" description = "Test out Shisa 7B in either English or Japanese." placeholder = "Type Here / ここに入力してください" examples = [ "Hello, how are you?", "こんにちは、元気ですか?", "おっす、元気?", "こんにちは、いかがお過ごしですか?", ] tokenizer = AutoTokenizer.from_pretrained(model) model = AutoModelForCausalLM.from_pretrained(model) def chat(input, history=[]): input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt") history = model.generate( input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id ).tolist() # convert the tokens to text, and then split the responses into lines response = tokenizer.decode(history[0]).split("<|endoftext|>") ''' # tokenize the new input sentence new_user_input_ids = tokenizer.encode( input + tokenizer.eos_token, return_tensors="pt" ) # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate( bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id ).tolist() # convert the tokens to text, and then split the responses into lines response = tokenizer.decode(history[0]).split("<|endoftext|>") # print('decoded_response-->>'+str(response)) response = [ (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) ] # convert to tuples of list # print('response-->>'+str(response)) ''' return response, history gr.ChatInterface( chat, chatbot=gr.Chatbot(height=400), textbox=gr.Textbox(placeholder=placeholder, container=False, scale=7), title=title, description=description, theme="soft", examples=examples, cache_examples=False, undo_btn="Delete Previous", clear_btn="Clear", ).queue().launch() """