|
import gradio as gr |
|
|
|
from matplotlib import gridspec |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from PIL import Image |
|
import tensorflow as tf |
|
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation |
|
|
|
feature_extractor = SegformerFeatureExtractor.from_pretrained( |
|
"nvidia/segformer-b5-finetuned-ade-640-640" |
|
) |
|
model = TFSegformerForSemanticSegmentation.from_pretrained( |
|
"nvidia/segformer-b5-finetuned-ade-640-640" |
|
) |
|
|
|
def ade_palette(): |
|
"""ADE20K palette that maps each class to RGB values.""" |
|
return [ |
|
[120, 120, 120], |
|
[180, 120, 120], |
|
[6, 230, 230], |
|
[80, 50, 50], |
|
[4, 200, 3], |
|
[120, 120, 80], |
|
[140, 140, 140], |
|
[204, 5, 255], |
|
[230, 230, 230], |
|
[4, 250, 7], |
|
[224, 5, 255], |
|
[235, 255, 7], |
|
[150, 5, 61], |
|
[120, 120, 70], |
|
[8, 255, 51], |
|
[255, 6, 82], |
|
[143, 255, 140], |
|
[204, 255, 4], |
|
[255, 51, 7], |
|
[204, 70, 3], |
|
[0, 102, 200], |
|
[61, 230, 250], |
|
[255, 6, 51], |
|
[11, 102, 255], |
|
[255, 7, 71], |
|
[255, 9, 224], |
|
[9, 7, 230], |
|
[220, 220, 220], |
|
[255, 9, 92], |
|
[112, 9, 255], |
|
[8, 255, 214], |
|
[7, 255, 224], |
|
[255, 184, 6], |
|
[10, 255, 71], |
|
[255, 41, 10], |
|
[7, 255, 255], |
|
[224, 255, 8], |
|
[102, 8, 255], |
|
[255, 61, 6], |
|
[255, 194, 7], |
|
[255, 122, 8], |
|
[0, 255, 20], |
|
[255, 8, 41], |
|
[255, 5, 153], |
|
[6, 51, 255], |
|
[235, 12, 255], |
|
[160, 150, 20], |
|
[0, 163, 255], |
|
[140, 140, 140], |
|
[250, 10, 15], |
|
[20, 255, 0], |
|
[31, 255, 0], |
|
[255, 31, 0], |
|
[255, 224, 0], |
|
[153, 255, 0], |
|
[0, 0, 255], |
|
[255, 71, 0], |
|
[0, 235, 255], |
|
[0, 173, 255], |
|
[31, 0, 255], |
|
[11, 200, 200], |
|
[255, 82, 0], |
|
[0, 255, 245], |
|
[0, 61, 255], |
|
[0, 255, 112], |
|
[0, 255, 133], |
|
[255, 0, 0], |
|
[255, 163, 0], |
|
[255, 102, 0], |
|
[194, 255, 0], |
|
[0, 143, 255], |
|
[51, 255, 0], |
|
[0, 82, 255], |
|
[0, 255, 41], |
|
[0, 255, 173], |
|
[10, 0, 255], |
|
[173, 255, 0], |
|
[0, 255, 153], |
|
[255, 92, 0], |
|
[255, 0, 255], |
|
[255, 0, 245], |
|
[255, 0, 102], |
|
[255, 173, 0], |
|
[255, 0, 20], |
|
[255, 184, 184], |
|
[0, 31, 255], |
|
[0, 255, 61], |
|
[0, 71, 255], |
|
[255, 0, 204], |
|
[0, 255, 194], |
|
[0, 255, 82], |
|
[0, 10, 255], |
|
[0, 112, 255], |
|
[51, 0, 255], |
|
[0, 194, 255], |
|
[0, 122, 255], |
|
[0, 255, 163], |
|
[255, 153, 0], |
|
[0, 255, 10], |
|
[255, 112, 0], |
|
[143, 255, 0], |
|
[82, 0, 255], |
|
[163, 255, 0], |
|
[255, 235, 0], |
|
[8, 184, 170], |
|
[133, 0, 255], |
|
[0, 255, 92], |
|
[184, 0, 255], |
|
[255, 0, 31], |
|
[0, 184, 255], |
|
[0, 214, 255], |
|
[255, 0, 112], |
|
[92, 255, 0], |
|
[0, 224, 255], |
|
[112, 224, 255], |
|
[70, 184, 160], |
|
[163, 0, 255], |
|
[153, 0, 255], |
|
[71, 255, 0], |
|
[255, 0, 163], |
|
[255, 204, 0], |
|
[255, 0, 143], |
|
[0, 255, 235], |
|
[133, 255, 0], |
|
[255, 0, 235], |
|
[245, 0, 255], |
|
[255, 0, 122], |
|
[255, 245, 0], |
|
[10, 190, 212], |
|
[214, 255, 0], |
|
[0, 204, 255], |
|
[20, 0, 255], |
|
[255, 255, 0], |
|
[0, 153, 255], |
|
[0, 41, 255], |
|
[0, 255, 204], |
|
[41, 0, 255], |
|
[41, 255, 0], |
|
[173, 0, 255], |
|
[0, 245, 255], |
|
[71, 0, 255], |
|
[122, 0, 255], |
|
[0, 255, 184], |
|
[0, 92, 255], |
|
[184, 255, 0], |
|
[0, 133, 255], |
|
[255, 214, 0], |
|
[25, 194, 194], |
|
[102, 255, 0], |
|
[92, 0, 255], |
|
] |
|
|
|
labels_list = [] |
|
|
|
with open(r'labels.txt', 'r') as fp: |
|
for line in fp: |
|
labels_list.append(line[:-1]) |
|
|
|
colormap = np.asarray(ade_palette()) |
|
|
|
def label_to_color_image(label): |
|
if label.ndim != 2: |
|
raise ValueError("Expect 2-D input label") |
|
|
|
if np.max(label) >= len(colormap): |
|
raise ValueError("label value too large.") |
|
|
|
return colormap[label] |
|
|
|
def draw_plot(pred_img, seg): |
|
fig = plt.figure(figsize=(20, 15)) |
|
|
|
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) |
|
|
|
plt.subplot(grid_spec[0]) |
|
plt.imshow(pred_img) |
|
plt.axis('off') |
|
|
|
LABEL_NAMES = np.asarray(labels_list) |
|
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) |
|
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) |
|
|
|
unique_labels = np.unique(seg.numpy().astype("uint8")) |
|
ax = plt.subplot(grid_spec[1]) |
|
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") |
|
ax.yaxis.tick_right() |
|
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) |
|
plt.xticks([], []) |
|
ax.tick_params(width=0.0, labelsize=25) |
|
return fig |
|
|
|
def sepia(input_img): |
|
input_img = Image.fromarray(input_img) |
|
|
|
inputs = feature_extractor(images=input_img, return_tensors="tf") |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
|
|
logits = tf.transpose(logits, [0, 2, 3, 1]) |
|
logits = tf.image.resize( |
|
logits, input_img.size[::-1] |
|
) |
|
seg = tf.math.argmax(logits, axis=-1)[0] |
|
|
|
color_seg = np.zeros( |
|
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8 |
|
) |
|
|
|
for label, color in enumerate(colormap): |
|
color_seg[seg == label, :] = color |
|
|
|
|
|
color_seg = color_seg[..., ::-1] |
|
|
|
|
|
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 |
|
pred_img = pred_img.astype(np.uint8) |
|
|
|
fig = draw_plot(pred_img, seg) |
|
return fig |
|
|
|
demo = gr.Interface(sepia, |
|
gr.Image(shape=(200, 200)), |
|
outputs=['plot'], |
|
|
|
allow_flagging='never') |
|
|
|
demo.launch() |