initial commit
Browse files- app.py +79 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from groq import Groq
|
7 |
+
from transformers import pipeline
|
8 |
+
from transformers.utils import is_flash_attn_2_available
|
9 |
+
from TTS.api import TTS
|
10 |
+
|
11 |
+
transcriber = pipeline("automatic-speech-recognition",
|
12 |
+
model="openai/whisper-large-v3",
|
13 |
+
torch_dtype=torch.float16,
|
14 |
+
device="cuda:0",
|
15 |
+
model_kwargs={"attn_implementation": "flash_attention_2"} if is_flash_attn_2_available() else {"attn_implementation": "sdpa"},
|
16 |
+
)
|
17 |
+
|
18 |
+
groq_client = Groq(api_key=os.getenv('GROQ_API_KEY'))
|
19 |
+
|
20 |
+
def transcribe(stream, new_chunk):
|
21 |
+
"""
|
22 |
+
Transcribes using whisper
|
23 |
+
"""
|
24 |
+
sr, y = new_chunk
|
25 |
+
|
26 |
+
# Convert stereo to mono if necessary
|
27 |
+
if y.ndim == 2 and y.shape[1] == 2:
|
28 |
+
y = y.mean(axis=1) # Averaging both channels if stereo
|
29 |
+
|
30 |
+
y = y.astype(np.float32)
|
31 |
+
|
32 |
+
# Normalization
|
33 |
+
y /= np.max(np.abs(y))
|
34 |
+
|
35 |
+
if stream is not None:
|
36 |
+
stream = np.concatenate([stream, y])
|
37 |
+
else:
|
38 |
+
stream = y
|
39 |
+
return stream, transcriber({"sampling_rate": sr, "raw": stream})["text"]
|
40 |
+
|
41 |
+
def autocomplete(text):
|
42 |
+
"""
|
43 |
+
Autocomplete the text using Gemma.
|
44 |
+
"""
|
45 |
+
if text != "":
|
46 |
+
response = groq_client.chat.completions.create(
|
47 |
+
model='gemma-7b-it',
|
48 |
+
messages=[{"role": "system", "content": "You are a friendly assistant named Gemma."},
|
49 |
+
{"role": "user", "content": text}]
|
50 |
+
)
|
51 |
+
|
52 |
+
return response.choices[0].message.content
|
53 |
+
|
54 |
+
def process_audio(input_audio, new_chunk):
|
55 |
+
"""
|
56 |
+
Process the audio input by transcribing and completing the sentences.
|
57 |
+
Accumulate results to return to Gradio interface.
|
58 |
+
"""
|
59 |
+
|
60 |
+
stream, transcription = transcribe(input_audio, new_chunk)
|
61 |
+
text = autocomplete(transcription)
|
62 |
+
api = TTS(model_name="tts_models/fra/fairseq/vits").to("cuda")
|
63 |
+
api.tts_to_file(text, file_path="output.wav")
|
64 |
+
gr.Audio(interactive=False, autoplay=True)
|
65 |
+
print (transcription, text)
|
66 |
+
return stream, text
|
67 |
+
|
68 |
+
|
69 |
+
demo = gr.Interface(
|
70 |
+
fn = process_audio,
|
71 |
+
inputs = ["state", gr.Audio(sources=["microphone"], streaming=True)],
|
72 |
+
outputs = ["state", gr.Markdown()],
|
73 |
+
title="Hey Gemma ☎️",
|
74 |
+
description="Powered by [whisper-base-en](https://huggingface.co/openai/whisper-base.en), and [gemma-7b-it](https://huggingface.co/google/gemma-7b-it) (via [Groq](https://groq.com/))",
|
75 |
+
live=True,
|
76 |
+
allow_flagging="never"
|
77 |
+
)
|
78 |
+
|
79 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.19.2
|
2 |
+
groq==0.4.2
|
3 |
+
numpy==1.24.4
|
4 |
+
torchaudio==2.2.1
|
5 |
+
transformers==4.37.2
|
6 |
+
tts
|