File size: 10,351 Bytes
fb8c051
 
 
 
 
 
 
 
 
 
8ef9348
3a7ead9
 
 
 
 
 
 
 
 
 
8ef9348
3a7ead9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ef9348
 
3a7ead9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ef9348
 
 
 
3a7ead9
 
 
 
 
 
 
 
8ef9348
3a7ead9
 
8ef9348
3a7ead9
 
 
 
 
 
8ef9348
 
3a7ead9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ef9348
3a7ead9
 
 
 
 
 
 
 
8ef9348
3a7ead9
 
 
 
fb8c051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a7ead9
fb8c051
 
 
 
 
 
 
a6aecff
fb8c051
 
 
 
8aec19e
 
 
 
 
 
 
 
fb8c051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ef9348
 
 
 
 
fb8c051
 
8ef9348
fb8c051
 
 
 
 
 
 
3a7ead9
fb8c051
 
 
 
 
 
 
8ef9348
3a7ead9
 
fb8c051
 
 
3a7ead9
fb8c051
8aec19e
 
 
 
 
 
 
 
 
fb8c051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e7254f
 
fb8c051
 
 
 
 
 
 
 
 
a6aecff
 
8ef9348
a6aecff
 
4e7254f
8ef9348
 
 
 
 
 
3a7ead9
a6aecff
3a7ead9
8ef9348
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Generate references
#   1. select most correlated references from "references" dataset or Arxiv search engine.
#   2. Generate bibtex from the selected papers. --> to_bibtex()
#   3. Generate prompts from the selected papers: --> to_prompts()
#       {"paper_id": "paper summary"}


import requests
import re


#########################################################
# Some basic tools
#########################################################
def remove_newlines(serie):
    serie = serie.replace('\n', ' ')
    serie = serie.replace('\\n', ' ')
    serie = serie.replace('  ', ' ')
    serie = serie.replace('  ', ' ')
    return serie


#########################################################
# Semantic Scholar (SS) API
#########################################################
def ss_search(keywords, limit=20, fields=None):
    # space between the  query to be removed and replaced with +
    if fields is None:
        fields = ["title", "abstract", "venue", "year", "authors", "tldr", "embedding", "externalIds"]
    keywords = keywords.lower()
    keywords = keywords.replace(" ", "+")
    url = f'https://api.semanticscholar.org/graph/v1/paper/search?query={keywords}&limit={limit}&fields={",".join(fields)}'
    # headers = {"Accept": "*/*", "x-api-key": constants.S2_KEY}
    headers = {"Accept": "*/*"}

    response = requests.get(url, headers=headers, timeout=30)
    return response.json()


def _collect_papers_ss(keyword, counts=3, tldr=False):
    def externalIds2link(externalIds):
        # Sample externalIds:
        #   "{'MAG': '2932819148', 'DBLP': 'conf/icml/HaarnojaZAL18', 'ArXiv': '1801.01290', 'CorpusId': 28202810}"
        if externalIds:
            # Supports ArXiv, MAG, ACL, PubMed, Medline, PubMedCentral, DBLP, DOI
            # priority: DBLP > arXiv > (todo: MAG > CorpusId > DOI > ACL > PubMed > Mdeline > PubMedCentral)
            # DBLP
            dblp_id = externalIds.get('DBLP')
            if dblp_id is not None:
                dblp_link = f"dblp.org/rec/{dblp_id}"
                return dblp_link
            # arXiv
            arxiv_id = externalIds.get('ArXiv')
            if arxiv_id is not None:
                arxiv_link = f"arxiv.org/abs/{arxiv_id}"
                return arxiv_link
            return ""
        else:
            # if this is an empty dictionary, return an empty string
            return ""

    def extract_paper_id(last_name, year_str, title):
        pattern = r'^\w+'
        words = re.findall(pattern, title)
        # return last_name + year_str + title.split(' ', 1)[0]
        return last_name + year_str + words[0]

    def extract_author_info(raw_authors):
        authors = [author['name'] for author in raw_authors]

        authors_str = " and ".join(authors)
        last_name = authors[0].split()[-1]
        return authors_str, last_name

    def parse_search_results(search_results_ss):
        # turn the search result to a list of paper dictionary.
        papers = []
        for raw_paper in search_results_ss:
            if raw_paper["abstract"] is None:
                continue

            authors_str, last_name = extract_author_info(raw_paper['authors'])
            year_str = str(raw_paper['year'])
            title = raw_paper['title']
            # some journal may contain &; replace it. e.g. journal={IEEE Power & Energy Society General Meeting}
            journal = raw_paper['venue'].replace("&", "\\&")
            if not journal:
                journal = "arXiv preprint"
            paper_id = extract_paper_id(last_name, year_str, title).lower()
            link = externalIds2link(raw_paper['externalIds'])
            if tldr and raw_paper['tldr'] is not None:
                abstract = raw_paper['tldr']['text']
            else:
                abstract = remove_newlines(raw_paper['abstract'])
            result = {
                "paper_id": paper_id,
                "title": title,
                "abstract": abstract,  # todo: compare results with tldr
                "link": link,
                "authors": authors_str,
                "year": year_str,
                "journal": journal
            }
            papers.append(result)
        return papers

    raw_results = ss_search(keyword, limit=counts)
    if raw_results is not None:
        search_results = raw_results['data']
    else:
        search_results = []
    results = parse_search_results(search_results)
    return results


#########################################################
# ArXiv API
#########################################################
def _collect_papers_arxiv(keyword, counts=3, tldr=False):
    # Build the arXiv API query URL with the given keyword and other parameters
    def build_query_url(keyword, results_limit=3, sort_by="relevance", sort_order="descending"):
        base_url = "http://export.arxiv.org/api/query?"
        query = f"search_query=all:{keyword}&start=0&max_results={results_limit}"
        query += f"&sortBy={sort_by}&sortOrder={sort_order}"
        return base_url + query

    # Fetch search results from the arXiv API using the constructed URL
    def fetch_search_results(query_url):
        response = requests.get(query_url)
        return response.text

    # Parse the XML content of the API response to extract paper information
    def parse_results(content):
        from xml.etree import ElementTree as ET

        root = ET.fromstring(content)
        namespace = "{http://www.w3.org/2005/Atom}"
        entries = root.findall(f"{namespace}entry")

        results = []
        for entry in entries:
            title = entry.find(f"{namespace}title").text
            link = entry.find(f"{namespace}id").text
            summary = entry.find(f"{namespace}summary").text
            summary = remove_newlines(summary)

            # Extract the authors
            authors = entry.findall(f"{namespace}author")
            author_list = []
            for author in authors:
                name = author.find(f"{namespace}name").text
                author_list.append(name)
            authors_str = " and ".join(author_list)

            # Extract the year
            published = entry.find(f"{namespace}published").text
            year = published.split("-")[0]

            founds = re.search(r'\d+\.\d+', link)
            if founds is None:
                # some links are not standard; such as "https://arxiv.org/abs/cs/0603127v1".
                # will be solved in the future.
                continue
            else:
                arxiv_id = founds.group(0)
            journal = f"arXiv preprint arXiv:{arxiv_id}"
            result = {
                "paper_id": arxiv_id,
                "title": title,
                "link": link,
                "abstract": summary,
                "authors": authors_str,
                "year": year,
                "journal": journal
            }
            results.append(result)

        return results

    query_url = build_query_url(keyword, counts)
    content = fetch_search_results(query_url)
    results = parse_results(content)
    return results


#########################################################
# References Class
#########################################################

# Each `paper` is a dictionary containing (1) paper_id (2) title (3) authors (4) year (5) link (6) abstract (7) journal
class References:
    def __init__(self, load_papers=""):
        if load_papers:
            # todo: read a json file from the given path
            #       this could be used to support pre-defined references
            pass
        else:
            self.papers = []

    def collect_papers(self, keywords_dict, method="arxiv", tldr=False):
        """
        keywords_dict:
            {"machine learning": 5, "language model": 2};
            the first is the keyword, the second is how many references are needed.
        """
        match method:
            case "arxiv":
                process = _collect_papers_arxiv
            case "ss":
                process = _collect_papers_ss
            case _:
                raise NotImplementedError("Other sources have not been not supported yet.")
        for key, counts in keywords_dict.items():
            self.papers = self.papers + process(key, counts, tldr)

        seen = set()
        papers = []
        for paper in self.papers:
            paper_id = paper["paper_id"]
            if paper_id not in seen:
                seen.add(paper_id)
                papers.append(paper)
        self.papers = papers

    def to_bibtex(self, path_to_bibtex="ref.bib"):
        """
        Turn the saved paper list into bibtex file "ref.bib". Return a list of all `paper_id`.
        """
        papers = self.papers

        # clear the bibtex file
        with open(path_to_bibtex, "w", encoding="utf-8") as file:
            file.write("")

        bibtex_entries = []
        paper_ids = []
        for paper in papers:
            bibtex_entry = f"""@article{{{paper["paper_id"]},
          title = {{{paper["title"]}}},
          author = {{{paper["authors"]}}}, 
          journal={{{paper["journal"]}}}, 
          year = {{{paper["year"]}}}, 
          url = {{{paper["link"]}}}
        }}"""
            bibtex_entries.append(bibtex_entry)
            paper_ids.append(paper["paper_id"])
            # Save the generated BibTeX entries to a file
            with open(path_to_bibtex, "a", encoding="utf-8") as file:
                file.write(bibtex_entry)
                file.write("\n\n")
        return paper_ids

    def to_prompts(self):
        # `prompts`:
        #   {"paper1_bibtex_id": "paper_1_abstract", "paper2_bibtex_id": "paper2_abstract"}
        #   this will be used to instruct GPT model to cite the correct bibtex entry.
        prompts = {}
        for paper in self.papers:
            prompts[paper["paper_id"]] = paper["abstract"]
        return prompts


if __name__ == "__main__":
    refs = References()
    keywords_dict = {
        "Deep Q-Networks": 15,
        "Policy Gradient Methods": 24,
        "Actor-Critic Algorithms": 4,
        "Model-Based Reinforcement Learning": 13,
        "Exploration-Exploitation Trade-off": 7
    }
    refs.collect_papers(keywords_dict, method="ss", tldr=True)
    for p in refs.papers:
        print(p["paper_id"])
    print(len(refs.papers))