Spaces:
Runtime error
Runtime error
from utils.knowledge import Knowledge | |
from langchain.vectorstores import FAISS | |
from utils.file_operations import list_folders | |
from huggingface_hub import snapshot_download | |
import gradio as gr | |
import os | |
import json | |
from models import EMBEDDINGS | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
REPO_ID = os.getenv("KDB_REPO") | |
snapshot_download(REPO_ID, repo_type="dataset", local_dir="knowledge_databases/", | |
local_dir_use_symlinks=False, token=HF_TOKEN) | |
ALL_KDB = ["(None)"] + list_folders("knowledge_databases") | |
def query_from_kdb(input, kdb, query_counts): | |
if kdb == "(None)": | |
return {"knowledge_database": "(None)", "input": input, "output": ""}, "" | |
db_path = f"knowledge_databases/{kdb}" | |
db_config_path = os.path.join(db_path, "db_meta.json") | |
db_index_path = os.path.join(db_path, "faiss_index") | |
if os.path.isdir(db_path): | |
# load configuration file | |
with open(db_config_path, "r", encoding="utf-8") as f: | |
db_config = json.load(f) | |
model_name = db_config["embedding_model"] | |
embeddings = EMBEDDINGS[model_name] | |
db = FAISS.load_local(db_index_path, embeddings) | |
knowledge = Knowledge(db=db) | |
knowledge.collect_knowledge({input: query_counts}, max_query=query_counts) | |
domain_knowledge = knowledge.to_json() | |
else: | |
raise RuntimeError(f"Failed to query from FAISS.") | |
return domain_knowledge, "" | |
ANNOUNCEMENT = """""" | |
with gr.Blocks() as demo: | |
gr.HTML(ANNOUNCEMENT) | |
with gr.Row(): | |
with gr.Column(): | |
kdb_dropdown = gr.Dropdown(choices=ALL_KDB, value="(None)") | |
user_input = gr.Textbox(label="Input") | |
button_retrieval = gr.Button("Query", variant="primary") | |
with gr.Accordion("Advanced Setting", open=False): | |
query_counts_slider = gr.Slider(minimum=1, maximum=20, value=10, step=1, | |
interactive=True, label="QUERY_COUNTS", | |
info="从知识库内检索多少条内容") | |
retrieval_output = gr.JSON(label="Output") | |
button_retrieval.click(fn=query_from_kdb, inputs=[user_input, kdb_dropdown, query_counts_slider], outputs=[retrieval_output, user_input]) | |
demo.queue(concurrency_count=1, max_size=5, api_open=False) | |
demo.launch(show_error=True) | |