leaderboards / app.py
Tristan Thrush
added secondary sorting if there are ties for the sorting metric, made sorting order for sorting metric reversible but not the other metrics
3bebb47
raw
history blame
5.81 kB
import pandas as pd
from tqdm.auto import tqdm
import streamlit as st
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
from ascending_metrics import ascending_metrics
import numpy as np
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode
from os.path import exists
import threading
def get_model_ids():
api = HfApi()
models = api.list_models(filter="model-index")
model_ids = [x.modelId for x in models]
return model_ids
def get_metadata(model_id):
try:
readme_path = hf_hub_download(model_id, filename="README.md")
return metadata_load(readme_path)
except Exception:
# 404 README.md not found or problem loading it
return None
def parse_metric_value(value):
if isinstance(value, str):
"".join(value.split("%"))
try:
value = float(value)
except: # noqa: E722
value = None
elif isinstance(value, list):
if len(value) > 0:
value = value[0]
else:
value = None
value = round(value, 2) if isinstance(value, float) else None
return value
def parse_metrics_rows(meta):
if not isinstance(meta["model-index"], list) or len(meta["model-index"]) == 0 or "results" not in meta["model-index"][0]:
return None
for result in meta["model-index"][0]["results"]:
if "dataset" not in result or "metrics" not in result or "type" not in result["dataset"]:
continue
dataset = result["dataset"]["type"]
if "args" not in result["dataset"]:
continue
row = {"dataset": dataset}
for metric in result["metrics"]:
type = metric["type"].lower().strip()
value = parse_metric_value(metric.get("value", None))
if value is None:
continue
if type not in row or value < row[type]:
# overwrite the metric if the new value is lower (e.g. with LM)
row[type] = value
yield row
@st.cache(ttl=3600)
def get_data_wrapper():
def get_data():
data = []
model_ids = get_model_ids()
for model_id in tqdm(model_ids):
meta = get_metadata(model_id)
if meta is None:
continue
for row in parse_metrics_rows(meta):
if row is None:
continue
row["model_id"] = model_id
data.append(row)
dataframe = pd.DataFrame.from_records(data)
dataframe.to_pickle("cache.pkl")
if exists("cache.pkl"):
# If we have saved the results previously, call an asynchronous process
# to fetch the results and update the saved file. Don't make users wait
# while we fetch the new results. Instead, display the old results for
# now. The new results should be loaded when this method
# is called again.
dataframe = pd.read_pickle("cache.pkl")
t = threading.Thread(name='get_data procs', target=get_data)
t.start()
else:
# We have to make the users wait during the first startup of this app.
get_data()
dataframe = pd.read_pickle("cache.pkl")
return dataframe
dataframe = get_data_wrapper()
selectable_datasets = list(set(dataframe.dataset.tolist()))
st.markdown("# πŸ€— Leaderboards")
query_params = st.experimental_get_query_params()
default_dataset = "common_voice"
if "dataset" in query_params:
if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in selectable_datasets:
default_dataset = query_params["dataset"][0]
dataset = st.sidebar.selectbox(
"Dataset",
selectable_datasets,
index=selectable_datasets.index(default_dataset),
)
st.experimental_set_query_params(**{"dataset": [dataset]})
dataset_df = dataframe[dataframe.dataset == dataset]
dataset_df = dataset_df.dropna(axis="columns", how="all")
selectable_metrics = list(filter(lambda column: column not in ("model_id", "dataset"), dataset_df.columns))
sorting_metric = st.sidebar.radio(
"Sorting Metric",
selectable_metrics,
)
dataset_df = dataset_df.filter(["model_id"] + selectable_metrics)
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
st.markdown(
"Please click on the model's name to be redirected to its model card."
)
st.markdown(
"Want to beat the leaderboard? Don't see your model here? Simply request an automatic evaluation [here](https://huggingface.co/spaces/autoevaluate/autoevaluate)."
)
# Make the default metric appear right after model names
cols = dataset_df.columns.tolist()
cols.remove(sorting_metric)
cols = cols[:1] + [sorting_metric] + cols[1:]
dataset_df = dataset_df[cols]
# Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
dataset_df = dataset_df.sort_values(by=cols[1:], ascending=[metric in ascending_metrics for metric in cols[1:]])
dataset_df = dataset_df.replace(np.nan, '-')
# Make the leaderboard
gb = GridOptionsBuilder.from_dataframe(dataset_df)
gb.configure_default_column(sortable=False)
gb.configure_column(
"model_id",
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
)
for name in selectable_metrics:
gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=2, aggFunc='sum')
gb.configure_column(
sorting_metric,
sortable=True,
cellStyle=JsCode('''function(params) { return {'backgroundColor': '#FFD21E'}}''')
)
go = gb.build()
AgGrid(dataset_df, gridOptions=go, allow_unsafe_jscode=True, fit_columns_on_grid_load=True)