Spaces:
Runtime error
Runtime error
Tristan Thrush
commited on
Commit
·
5170076
1
Parent(s):
338a59f
added ability to not select a dataset
Browse files
app.py
CHANGED
@@ -40,6 +40,8 @@ def parse_metrics_rows(meta, only_verified=False):
|
|
40 |
if not isinstance(result, dict) or "dataset" not in result or "metrics" not in result or "type" not in result["dataset"]:
|
41 |
continue
|
42 |
dataset = result["dataset"]["type"]
|
|
|
|
|
43 |
row = {"dataset": dataset, "split": "-unspecified-", "config": "-unspecified-"}
|
44 |
if "split" in result["dataset"]:
|
45 |
row["split"] = result["dataset"]["split"]
|
@@ -147,7 +149,7 @@ task = st.sidebar.selectbox(
|
|
147 |
if task != "-any-":
|
148 |
dataframe = dataframe[dataframe.pipeline_tag == task]
|
149 |
|
150 |
-
selectable_datasets = sorted(list(set(dataframe.dataset.tolist())), key=lambda name: name.lower())
|
151 |
if "" in selectable_datasets:
|
152 |
selectable_datasets.remove("")
|
153 |
|
@@ -172,30 +174,37 @@ dataframe = dataframe[dataframe.only_verified == only_verified_results]
|
|
172 |
|
173 |
st.experimental_set_query_params(**{"dataset": [dataset]})
|
174 |
|
175 |
-
|
|
|
|
|
|
|
|
|
176 |
dataset_df = dataset_df.dropna(axis="columns", how="all")
|
177 |
|
178 |
if len(dataset_df) > 0:
|
179 |
|
180 |
selectable_configs = list(set(dataset_df["config"]))
|
181 |
-
config = st.sidebar.selectbox(
|
182 |
-
"Config",
|
183 |
-
selectable_configs,
|
184 |
-
help="Filter the results on the current leaderboard by the dataset config. Self-reported results might not report the config, which is why \"-unspecified-\" is an option."
|
185 |
-
)
|
186 |
-
dataset_df = dataset_df[dataset_df.config == config]
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
|
200 |
|
201 |
sorting_metric = st.sidebar.radio(
|
@@ -213,19 +222,38 @@ if len(dataset_df) > 0:
|
|
213 |
)
|
214 |
|
215 |
st.markdown(
|
216 |
-
"
|
217 |
)
|
218 |
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
220 |
cols = dataset_df.columns.tolist()
|
221 |
cols.remove(sorting_metric)
|
222 |
-
|
|
|
223 |
dataset_df = dataset_df[cols]
|
224 |
|
225 |
# Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
|
226 |
-
dataset_df = dataset_df.sort_values(by=cols[
|
227 |
dataset_df = dataset_df.replace(np.nan, '-')
|
228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
# Make the leaderboard
|
230 |
gb = GridOptionsBuilder.from_dataframe(dataset_df)
|
231 |
gb.configure_default_column(sortable=False)
|
@@ -233,6 +261,11 @@ if len(dataset_df) > 0:
|
|
233 |
"model_id",
|
234 |
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
|
235 |
)
|
|
|
|
|
|
|
|
|
|
|
236 |
for name in selectable_metrics:
|
237 |
gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=4, aggFunc='sum')
|
238 |
|
|
|
40 |
if not isinstance(result, dict) or "dataset" not in result or "metrics" not in result or "type" not in result["dataset"]:
|
41 |
continue
|
42 |
dataset = result["dataset"]["type"]
|
43 |
+
if dataset == "":
|
44 |
+
continue
|
45 |
row = {"dataset": dataset, "split": "-unspecified-", "config": "-unspecified-"}
|
46 |
if "split" in result["dataset"]:
|
47 |
row["split"] = result["dataset"]["split"]
|
|
|
149 |
if task != "-any-":
|
150 |
dataframe = dataframe[dataframe.pipeline_tag == task]
|
151 |
|
152 |
+
selectable_datasets = ["-any-"] + sorted(list(set(dataframe.dataset.tolist())), key=lambda name: name.lower())
|
153 |
if "" in selectable_datasets:
|
154 |
selectable_datasets.remove("")
|
155 |
|
|
|
174 |
|
175 |
st.experimental_set_query_params(**{"dataset": [dataset]})
|
176 |
|
177 |
+
if dataset != "-any-":
|
178 |
+
dataset_df = dataframe[dataframe.dataset == dataset]
|
179 |
+
else:
|
180 |
+
dataset_df = dataframe
|
181 |
+
|
182 |
dataset_df = dataset_df.dropna(axis="columns", how="all")
|
183 |
|
184 |
if len(dataset_df) > 0:
|
185 |
|
186 |
selectable_configs = list(set(dataset_df["config"]))
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
+
if dataset != "-any-":
|
189 |
+
config = st.sidebar.selectbox(
|
190 |
+
"Config",
|
191 |
+
selectable_configs,
|
192 |
+
help="Filter the results on the current leaderboard by the dataset config. Self-reported results might not report the config, which is why \"-unspecified-\" is an option."
|
193 |
+
)
|
194 |
+
dataset_df = dataset_df[dataset_df.config == config]
|
195 |
+
|
196 |
+
selectable_splits = list(set(dataset_df["split"]))
|
197 |
+
split = st.sidebar.selectbox(
|
198 |
+
"Split",
|
199 |
+
selectable_splits,
|
200 |
+
help="Filter the results on the current leaderboard by the dataset split. Self-reported results might not report the split, which is why \"-unspecified-\" is an option."
|
201 |
+
)
|
202 |
+
dataset_df = dataset_df[dataset_df.split == split]
|
203 |
+
|
204 |
+
not_selectable_metrics = ["model_id", "dataset", "split", "config", "pipeline_tag", "only_verified"]
|
205 |
+
selectable_metrics = list(filter(lambda column: column not in not_selectable_metrics, dataset_df.columns))
|
206 |
+
|
207 |
+
dataset_df = dataset_df.filter(["model_id"] + (["dataset"] if dataset == "-any-" else []) + selectable_metrics)
|
208 |
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
|
209 |
|
210 |
sorting_metric = st.sidebar.radio(
|
|
|
222 |
)
|
223 |
|
224 |
st.markdown(
|
225 |
+
"If you do not see your self-reported results here, ensure that your results are in the expected range for all metrics. E.g., accuracy is 0-1, not 0-100."
|
226 |
)
|
227 |
|
228 |
+
if dataset == "-any-":
|
229 |
+
st.info(
|
230 |
+
"Note: you haven't chosen a dataset, so the leaderboard is showing the best scoring model for each dataset."
|
231 |
+
)
|
232 |
+
|
233 |
+
# Make the default metric appear right after model names and dataset names
|
234 |
cols = dataset_df.columns.tolist()
|
235 |
cols.remove(sorting_metric)
|
236 |
+
sorting_metric_index = 1 if dataset != "-any-" else 2
|
237 |
+
cols = cols[:sorting_metric_index] + [sorting_metric] + cols[sorting_metric_index:]
|
238 |
dataset_df = dataset_df[cols]
|
239 |
|
240 |
# Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
|
241 |
+
dataset_df = dataset_df.sort_values(by=cols[sorting_metric_index:], ascending=[metric in ascending_metrics for metric in cols[sorting_metric_index:]])
|
242 |
dataset_df = dataset_df.replace(np.nan, '-')
|
243 |
|
244 |
+
# If dataset is "-any-", only show the best model for each dataset. Otherwise
|
245 |
+
# The leaderboard is way too long and doesn't give the users a feel for all of
|
246 |
+
# the datasets available for a task.
|
247 |
+
if dataset == "-any-":
|
248 |
+
filtered_dataset_df_dict = {column: [] for column in dataset_df.columns}
|
249 |
+
seen_datasets = set()
|
250 |
+
for _, row in dataset_df.iterrows():
|
251 |
+
if row["dataset"] not in seen_datasets:
|
252 |
+
for column in dataset_df.columns:
|
253 |
+
filtered_dataset_df_dict[column].append(row[column])
|
254 |
+
seen_datasets.add(row["dataset"])
|
255 |
+
dataset_df = pd.DataFrame(filtered_dataset_df_dict)
|
256 |
+
|
257 |
# Make the leaderboard
|
258 |
gb = GridOptionsBuilder.from_dataframe(dataset_df)
|
259 |
gb.configure_default_column(sortable=False)
|
|
|
261 |
"model_id",
|
262 |
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
|
263 |
)
|
264 |
+
if dataset == "-any-":
|
265 |
+
gb.configure_column(
|
266 |
+
"dataset",
|
267 |
+
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/spaces/autoevaluate/leaderboards?dataset='+params.value+'">'+params.value+'</a>'}'''),
|
268 |
+
)
|
269 |
for name in selectable_metrics:
|
270 |
gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=4, aggFunc='sum')
|
271 |
|