Spaces:
Runtime error
Runtime error
Merge pull request #13 from huggingface/feat/select_metrics
Browse files- app.py +76 -2
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,12 +1,14 @@
|
|
|
|
1 |
import os
|
2 |
import uuid
|
3 |
from pathlib import Path
|
4 |
|
5 |
import pandas as pd
|
6 |
import streamlit as st
|
7 |
-
from datasets import get_dataset_config_names
|
8 |
from dotenv import load_dotenv
|
9 |
from huggingface_hub import list_datasets
|
|
|
10 |
|
11 |
from evaluation import filter_evaluated_models
|
12 |
from utils import (
|
@@ -37,9 +39,61 @@ TASK_TO_ID = {
|
|
37 |
"summarization": 8,
|
38 |
}
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
|
41 |
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
#######
|
44 |
# APP #
|
45 |
#######
|
@@ -256,6 +310,26 @@ with st.expander("Advanced configuration"):
|
|
256 |
with st.form(key="form"):
|
257 |
|
258 |
compatible_models = get_compatible_models(selected_task, selected_dataset)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models)
|
261 |
print("Selected models:", selected_models)
|
@@ -291,7 +365,7 @@ with st.form(key="form"):
|
|
291 |
"disk_size_gb": 150,
|
292 |
},
|
293 |
"evaluation": {
|
294 |
-
"metrics":
|
295 |
"models": selected_models,
|
296 |
},
|
297 |
},
|
|
|
1 |
+
import inspect
|
2 |
import os
|
3 |
import uuid
|
4 |
from pathlib import Path
|
5 |
|
6 |
import pandas as pd
|
7 |
import streamlit as st
|
8 |
+
from datasets import get_dataset_config_names, list_metrics, load_metric
|
9 |
from dotenv import load_dotenv
|
10 |
from huggingface_hub import list_datasets
|
11 |
+
from tqdm import tqdm
|
12 |
|
13 |
from evaluation import filter_evaluated_models
|
14 |
from utils import (
|
|
|
39 |
"summarization": 8,
|
40 |
}
|
41 |
|
42 |
+
TASK_TO_DEFAULT_METRICS = {
|
43 |
+
"binary_classification": ["f1", "precision", "recall", "auc", "accuracy"],
|
44 |
+
"multi_class_classification": [
|
45 |
+
"f1_micro",
|
46 |
+
"f1_macro",
|
47 |
+
"f1_weighted",
|
48 |
+
"precision_macro",
|
49 |
+
"precision_micro",
|
50 |
+
"precision_weighted",
|
51 |
+
"recall_macro",
|
52 |
+
"recall_micro",
|
53 |
+
"recall_weighted",
|
54 |
+
"accuracy",
|
55 |
+
],
|
56 |
+
"entity_extraction": ["precision", "recall", "f1", "accuracy"],
|
57 |
+
"extractive_question_answering": [],
|
58 |
+
"translation": ["sacrebleu", "gen_len"],
|
59 |
+
"summarization": ["rouge1", "rouge2", "rougeL", "rougeLsum", "gen_len"],
|
60 |
+
}
|
61 |
+
|
62 |
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
|
63 |
|
64 |
|
65 |
+
@st.cache
|
66 |
+
def get_supported_metrics():
|
67 |
+
metrics = list_metrics()
|
68 |
+
supported_metrics = []
|
69 |
+
for metric in tqdm(metrics):
|
70 |
+
try:
|
71 |
+
metric_func = load_metric(metric)
|
72 |
+
except Exception as e:
|
73 |
+
print(e)
|
74 |
+
print("Skipping the following metric, which cannot load:", metric)
|
75 |
+
|
76 |
+
argspec = inspect.getfullargspec(metric_func.compute)
|
77 |
+
if "references" in argspec.kwonlyargs and "predictions" in argspec.kwonlyargs:
|
78 |
+
# We require that "references" and "predictions" are arguments
|
79 |
+
# to the metric function. We also require that the other arguments
|
80 |
+
# besides "references" and "predictions" have defaults and so do not
|
81 |
+
# need to be specified explicitly.
|
82 |
+
defaults = True
|
83 |
+
for key, value in argspec.kwonlydefaults.items():
|
84 |
+
if key not in ("references", "predictions"):
|
85 |
+
if value is None:
|
86 |
+
defaults = False
|
87 |
+
break
|
88 |
+
|
89 |
+
if defaults:
|
90 |
+
supported_metrics.append(metric)
|
91 |
+
return supported_metrics
|
92 |
+
|
93 |
+
|
94 |
+
supported_metrics = get_supported_metrics()
|
95 |
+
|
96 |
+
|
97 |
#######
|
98 |
# APP #
|
99 |
#######
|
|
|
310 |
with st.form(key="form"):
|
311 |
|
312 |
compatible_models = get_compatible_models(selected_task, selected_dataset)
|
313 |
+
st.markdown("The following metrics will be computed")
|
314 |
+
html_string = " ".join(
|
315 |
+
[
|
316 |
+
'<div style="padding-right:5px;padding-left:5px;padding-top:5px;padding-bottom:5px;float:left">'
|
317 |
+
+ '<div style="background-color:#D3D3D3;border-radius:5px;display:inline-block;padding-right:5px;'
|
318 |
+
+ 'padding-left:5px;color:white">'
|
319 |
+
+ metric
|
320 |
+
+ "</div></div>"
|
321 |
+
for metric in TASK_TO_DEFAULT_METRICS[selected_task]
|
322 |
+
]
|
323 |
+
)
|
324 |
+
st.markdown(html_string, unsafe_allow_html=True)
|
325 |
+
selected_metrics = st.multiselect(
|
326 |
+
"(Optional) Select additional metrics",
|
327 |
+
list(set(supported_metrics) - set(TASK_TO_DEFAULT_METRICS[selected_task])),
|
328 |
+
)
|
329 |
+
st.info(
|
330 |
+
"Note: user-selected metrics will be run with their default arguments from "
|
331 |
+
+ "[here](https://github.com/huggingface/datasets/tree/master/metrics)"
|
332 |
+
)
|
333 |
|
334 |
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models)
|
335 |
print("Selected models:", selected_models)
|
|
|
365 |
"disk_size_gb": 150,
|
366 |
},
|
367 |
"evaluation": {
|
368 |
+
"metrics": selected_metrics,
|
369 |
"models": selected_models,
|
370 |
},
|
371 |
},
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
huggingface-hub==0.4.0
|
2 |
python-dotenv
|
3 |
streamlit==1.2.0
|
|
|
4 |
py7zr
|
|
|
1 |
huggingface-hub==0.4.0
|
2 |
python-dotenv
|
3 |
streamlit==1.2.0
|
4 |
+
datasets
|
5 |
py7zr
|