Spaces:
Sleeping
Sleeping
File size: 6,343 Bytes
380991e 04a0510 380991e 04a0510 fd6c6c7 380991e fd6c6c7 0401525 380991e 0401525 380991e 0401525 6a870b4 0401525 6a870b4 0401525 380991e 04a0510 0401525 1bd8ed9 2ed4b68 6c1ac0c a6902c5 0401525 6a870b4 0401525 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
from typing import final
import gradio as gr
import os
import json
from bs4 import BeautifulSoup
import requests
from huggingface_hub import InferenceClient
# Define global variables
BOT_AVATAR = 'https://automatedstockmining.org/wp-content/uploads/2024/08/south-west-value-mining-logo.webp'
hf_token = os.getenv("HF_TOKEN")
client = InferenceClient(token=hf_token)
custom_css = '''
.gradio-container {
font-family: 'Roboto', sans-serif;
}
.main-header {
text-align: center;
color: #4a4a4a;
margin-bottom: 2rem;
}
.tab-header {
font-size: 1.2rem;
font-weight: bold;
margin-bottom: 1rem;
}
.custom-chatbot {
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.custom-button {
background-color: #3498db;
color: white;
border: none;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
transition: background-color 0.3s ease;
}
.custom-button:hover {
background-color: #2980b9;
}
'''
def extract_text_from_webpage(html):
soup = BeautifulSoup(html, "html.parser")
for script in soup(["script", "style"]):
script.decompose()
visible_text = soup.get_text(separator=" ", strip=True)
return visible_text
def search(query):
term = query
max_chars_per_page = 8000
all_results = []
with requests.Session() as session:
try:
resp = session.get(
url="https://www.google.com/search",
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
params={"q": term, "num": 4},
timeout=5
)
resp.raise_for_status()
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
try:
webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0"}, timeout=5)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page]
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException as e:
print(f"Failed to retrieve {link}: {e}")
all_results.append({"link": link, "text": None})
except requests.exceptions.RequestException as e:
print(f"Google search failed: {e}")
return all_results
def process_query(user_input, history):
gr.Info('ℹ️ thinking...',duration = 6)
# Start with a system message
messages = [{'role': 'system', 'content': "YOU ARE IM.S, AN INVESTMENT CHATBOT BUILT BY automatedstockmining.org. IF THE USER ASKS WHO YOU ARE YOU SAY YOU ARE IM.S AND YOU WERE MADE BY automatedstockmining.org "}]
# Append history to messages
for user, assistant in history:
messages.append({'role': 'user', 'content': user})
messages.append({'role': 'assistant', 'content': assistant})
messages.append({'role': 'user', 'content': user_input})
# Perform the web search based on user input
search_results = search(user_input)
search_results_str = json.dumps(search_results)
# Create completion request to HuggingFace client
response = client.chat_completion(
model="Qwen/Qwen2.5-72B-Instruct",
messages=[{"role": "user", "content": f"YOU ARE IM.S, AN INVESTMENT CHATBOT BUILT BY automatedstockmining.org. Answer the user's request '{user_input}' using the following information: {search_results_str} and the chat history{history}. Provide a concise, direct answer in no more than 2-3 sentences. use the appropriate emojis for some of your responses. IF THE USER ASKS WHO YOU ARE YOU SAY YOU ARE IM.S AND YOU WERE MADE BY automatedstockmining.org"}],
max_tokens=400,
stream=True
)
final_response = ""
for chunk in response:
content = chunk.choices[0].delta.content or ''
final_response += content
yield final_response # Yield the accumulated response for real-time streaming
theme = gr.themes.Citrus(
primary_hue="blue",
neutral_hue="slate",
)
examples = [
["What's the current price of bitcoin"],
["What's the latest news on Cisco Systems stock"],
["Analyze technical indicators for Adobe, are they presenting buy or sell signals"],
["What's the current price of Apple stock"],
["What are the best stocks to buy this month"],
["What companies report earnings this week"],
["What's Apple's current market cap"],
["analyse the technical indicators for apple"],
["build a DFCF model for Apple"],
["Make a table of Apple's stock price for the last 3 days"],
['what is Apples PE ratio and how does it compare top other companies in consumer electronics'],
['how did salesforce do on its last earnings?'],
['what is the average analyst price target for Nvidia'],
['whats the outlook for the stock market in 2025'],
['when does Nvidia next report earnings'],
['what are the latest products from apple'],
["What is Tesla's current price-to-earnings ratio and how does it compare to other car manufacturers?"],
["List the top 5 performing stocks in the S&P 500 this month"],
["What is the dividend yield for Coca-Cola?"],
["Which companies in the tech sector are announcing dividends this month?"],
["Analyze the latest moving averages for Microsoft; are they indicating a trend reversal?"],
["What is the latest guidance on revenue for Meta?"],
["What is the current beta of Amazon stock and how does it compare to the industry average?"],
["What are the top-rated ETFs for technology exposure this quarter?"]
]
chatbot = gr.Chatbot(
label="IM.S",
avatar_images=[None, BOT_AVATAR],
show_copy_button=True,
layout="panel",
height = 700
)
gr.ChatInterface(
theme = theme,
fn=process_query,
chatbot=chatbot,
examples=examples,
).launch()
|