James MacQuillan commited on
Commit
a3fb953
·
1 Parent(s): 76e8ddc
Files changed (1) hide show
  1. app.py +4 -6
app.py CHANGED
@@ -91,7 +91,7 @@ def search(query):
91
  return all_results
92
 
93
  def process_query(user_input, history):
94
- gr.Info('ℹ️📈 interpreting your request',duration = 4)
95
  # Accumulate streamed content from the initial request
96
  stream_search = client.chat_completion(
97
  model="Qwen/Qwen2.5-72B-Instruct",
@@ -106,16 +106,16 @@ def process_query(user_input, history):
106
  content = chunk.choices[0].delta.content or ''
107
  streamed_search_query += content
108
 
109
-
110
 
111
  # Perform the web search based on the accumulated query
112
  search_results = search(streamed_search_query)
113
  search_results_str = json.dumps(search_results)
114
- gr.Info('ℹ️📈 thinking...', duration = 3.5)
115
  # Create the response request with HuggingFace using search results
116
  response = client.chat_completion(
117
  model="Qwen/Qwen2.5-72B-Instruct",
118
- messages=[{"role": "user", "content": f"YOU ARE IM.S, AN INVESTMENT CHATBOT BUILT BY automatedstockmining.org. Answer the user's request '{user_input}' using the following information: {search_results_str} and the chat history {history}. Provide a concise, direct answer in no more than 2-3 sentences, with appropriate emojis. If the user asks for a smart sheet, generate up to 3000 tokens analyzing all trends and patterns. IF THE USER ASKS YOU WHO YOU ARE, JUST SAY THAT YOU ARE IM.S BUILT BY automatedstockmining.org"}],
119
  max_tokens=3000,
120
  stream=True
121
  )
@@ -133,7 +133,6 @@ theme = gr.themes.Citrus(
133
  )
134
 
135
  examples = [
136
-
137
  ["whats the trending social sentiment like for Nvidia"],
138
  ["What's the latest news on Cisco Systems stock"],
139
  ["Analyze technical indicators for Adobe, are they presenting buy or sell signals"],
@@ -158,7 +157,6 @@ examples = [
158
  ["What is the latest guidance on revenue for Meta?"],
159
  ["What is the current beta of Amazon stock and how does it compare to the industry average?"],
160
  ["What are the top-rated ETFs for technology exposure this quarter?"]
161
-
162
  ]
163
 
164
  chatbot = gr.Chatbot(
 
91
  return all_results
92
 
93
  def process_query(user_input, history):
94
+
95
  # Accumulate streamed content from the initial request
96
  stream_search = client.chat_completion(
97
  model="Qwen/Qwen2.5-72B-Instruct",
 
106
  content = chunk.choices[0].delta.content or ''
107
  streamed_search_query += content
108
 
109
+ print("Search Query:", streamed_search_query) # Debugging: Check the final search term
110
 
111
  # Perform the web search based on the accumulated query
112
  search_results = search(streamed_search_query)
113
  search_results_str = json.dumps(search_results)
114
+
115
  # Create the response request with HuggingFace using search results
116
  response = client.chat_completion(
117
  model="Qwen/Qwen2.5-72B-Instruct",
118
+ messages=[{"role": "user", "content": f"YOU ARE IM.S, AN INVESTMENT CHATBOT BUILT BY automatedstockmining.org. Answer the user's request '{user_input}' using the following information: {search_results_str} and the chat history {history}. Provide a concise, direct answer in no more than 2-3 sentences, with appropriate emojis. If the user asks for a smart sheet, generate up to 3000 tokens analyzing all trends and patterns as though you are a stock analyst, look for every pattern and form conclusions."}],
119
  max_tokens=3000,
120
  stream=True
121
  )
 
133
  )
134
 
135
  examples = [
 
136
  ["whats the trending social sentiment like for Nvidia"],
137
  ["What's the latest news on Cisco Systems stock"],
138
  ["Analyze technical indicators for Adobe, are they presenting buy or sell signals"],
 
157
  ["What is the latest guidance on revenue for Meta?"],
158
  ["What is the current beta of Amazon stock and how does it compare to the industry average?"],
159
  ["What are the top-rated ETFs for technology exposure this quarter?"]
 
160
  ]
161
 
162
  chatbot = gr.Chatbot(