James MacQuillan commited on
Commit
05c3fbf
·
1 Parent(s): 240d63f
Files changed (2) hide show
  1. app.py +255 -58
  2. requirements.txt +11 -1
app.py CHANGED
@@ -1,64 +1,261 @@
 
 
 
1
  import gradio as gr
 
 
 
 
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ from sentence_transformers import SentenceTransformer
4
  import gradio as gr
5
+ import os
6
+ import json
7
+ from bs4 import BeautifulSoup
8
+ import requests
9
  from huggingface_hub import InferenceClient
10
 
11
+ from langchain.vectorstores import Chroma
12
+ # Required imports
13
+ from sentence_transformers import SentenceTransformer
14
+ from langchain.embeddings import HuggingFaceEmbeddings # Use Hugging Face wrapper for SentenceTransformers
15
+ from langchain.document_loaders import DirectoryLoader, TextLoader
16
+ from langchain.text_splitter import CharacterTextSplitter
17
+ from langchain.schema import Document
18
+ from langchain.vectorstores import Chroma
19
+ import numpy as np
20
+ from sklearn.manifold import TSNE
21
+ import plotly.graph_objects as go
22
+
23
+ from langchain.document_loaders import DirectoryLoader, TextLoader
24
+ from langchain.text_splitter import CharacterTextSplitter
25
+ from langchain.schema import Document
26
+ import chromadb.utils.embedding_functions as embedding_functions
27
+ from langchain.embeddings import HuggingFaceEmbeddings
28
+
29
+ hf_token = os.getenv('HF_TOKEN')
30
+ huggingface_ef = embedding_functions.HuggingFaceEmbeddingFunction(
31
+ api_key=hf_token,
32
+ model_name="sentence-transformers/all-MiniLM-L6-v2"
33
+ )
34
+ embedding_model = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
35
+ # Define global variables
36
+ BOT_AVATAR = 'https://automatedstockmining.org/wp-content/uploads/2024/08/south-west-value-mining-logo.webp'
37
+
38
+
39
+
40
+
41
+
42
+
43
+
44
+
45
+
46
+
47
+ # Initialize Chroma vector store directory
48
+ db_name = "health_checkvector_db"
49
+
50
+ # Read in the text for processing
51
+ health_check_text = ''
52
+ with open('healthcheck.txt', 'r', encoding='utf-8') as file:
53
+ health_check_text = file.read()
54
+
55
+ # Split text into chunks
56
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
57
+ chunks = text_splitter.split_text(health_check_text)
58
+
59
+ # Convert chunks into Document objects
60
+ documents = [Document(page_content=chunk) for chunk in chunks]
61
+
62
+ # Initialize Chroma with documents and embeddings
63
+ vectorstore = Chroma.from_documents(
64
+ documents=documents,
65
+ embedding=embedding_model,
66
+ persist_directory=db_name
67
  )
68
 
69
 
70
+
71
+ client = InferenceClient(token=hf_token)
72
+
73
+ custom_css = '''
74
+ .gradio-container {
75
+ font-family: 'Roboto', sans-serif;
76
+ }
77
+ .main-header {
78
+ text-align: center;
79
+ color: #4a4a4a;
80
+ margin-bottom: 2rem;
81
+ }
82
+ .tab-header {
83
+ font-size: 1.2rem;
84
+ font-weight: bold;
85
+ margin-bottom: 1rem;
86
+ }
87
+ .custom-chatbot {
88
+ border-radius: 10px;
89
+ box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
90
+ }
91
+ .custom-button {
92
+ background-color: #3498db;
93
+ color: white;
94
+ border: none;
95
+ padding: 10px 20px;
96
+ border-radius: 5px;
97
+ cursor: pointer;
98
+ transition: background-color 0.3s ease;
99
+ }
100
+ .custom-button:hover {
101
+ background-color: #2980b9;
102
+ }
103
+ '''
104
+
105
+ def extract_text_from_webpage(html):
106
+ soup = BeautifulSoup(html, "html.parser")
107
+ for script in soup(["script", "style"]):
108
+ script.decompose()
109
+ visible_text = soup.get_text(separator=" ", strip=True)
110
+ return visible_text
111
+
112
+ def search(query):
113
+ term = query
114
+ max_chars_per_page = 8000
115
+ all_results = []
116
+
117
+ with requests.Session() as session:
118
+ try:
119
+ resp = session.get(
120
+ url="https://www.google.com/search",
121
+ headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
122
+ params={"q": term, "num": 7},
123
+ timeout=5
124
+ )
125
+ resp.raise_for_status()
126
+
127
+ soup = BeautifulSoup(resp.text, "html.parser")
128
+ result_block = soup.find_all("div", attrs={"class": "g"})
129
+
130
+ for result in result_block:
131
+ link = result.find("a", href=True)
132
+ if link:
133
+ link = link["href"]
134
+ try:
135
+ webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0"}, timeout=5)
136
+ webpage.raise_for_status()
137
+
138
+ visible_text = extract_text_from_webpage(webpage.text)
139
+ if len(visible_text) > max_chars_per_page:
140
+ visible_text = visible_text[:max_chars_per_page]
141
+
142
+ all_results.append({"link": link, "text": visible_text})
143
+
144
+ except requests.exceptions.RequestException as e:
145
+ print(f"Failed to retrieve {link}: {e}")
146
+ all_results.append({"link": link, "text": None})
147
+ except requests.exceptions.RequestException as e:
148
+ print(f"Google search failed: {e}")
149
+
150
+ return all_results
151
+
152
+ def process_query(user_input, history):
153
+
154
+ docs = vectorstore.similarity_search(user_input, k=5)
155
+
156
+ # Retrieve and concatenate results
157
+ retrieved_texts = " ".join([doc.page_content for doc in docs])
158
+
159
+ yield 'Preparing your request 🛠️'
160
+
161
+ # Step 1: Generate a search term based on the user query
162
+ stream_search = client.chat_completion(
163
+ model="Qwen/Qwen2.5-72B-Instruct",
164
+ messages=[{"role": "user", "content": f"Based on this chat history {history}and the user's request '{user_input}', suggest a Google search term in a single line without specific dates; use 'this year', 'this month', etc. INCLUDE NOTHING IN YOUR RESPONSE EXCEPT THE RELEVANT SEARCH RESULT. EXAMPLE: USER: WHAT IS THE CURRENT PRICE OF COCA COLA STOCK. YOUR RESPONSE: WHAT IS THE CURRENT PRICE OF COCA COLA STOCK. IF THE USER ASKS FOR A HEALTHCHECK, SEARCH FOR CURRENT METRICS FOR THE COMPANY."}],
165
+ max_tokens=400,
166
+ stream=True
167
+ )
168
+
169
+ # Collect the search term
170
+ search_query = ""
171
+ for chunk in stream_search:
172
+ content = chunk.choices[0].delta.content or ''
173
+ search_query += content
174
+
175
+ # Step 2: Perform the web search with the generated term
176
+ yield 'Searching the web for relevant information 🌐'
177
+
178
+
179
+ search_results = search(search_query)
180
+
181
+ # Format results as a JSON string for model input
182
+ search_results_str = json.dumps(search_results)
183
+
184
+ # Step 3: Generate a response using the search results
185
+ response = client.chat_completion(
186
+ model="Qwen/Qwen2.5-72B-Instruct",
187
+ messages=[{"role": "user", "content": f"Using the search results: {search_results_str} and chat history {history}, this vector database on health checks {retrieved_texts} answer the user's query '{user_input}' in a concise, precise way, using numerical data if available. ONLY GIVE ONE RESPONSE BACK, CONCISE OR DETAILED BASED ON THE USERS INPUT, if they ask for a smart sheet analyse the data in immense detail going over every point"}],
188
+ max_tokens=3000,
189
+ stream=True
190
+ )
191
+
192
+ yield "Analyzing the search results and crafting a response 📊"
193
+
194
+ # Stream final response
195
+ final_response = ""
196
+ for chunk in response:
197
+ content = chunk.choices[0].delta.content or ''
198
+ final_response += content
199
+ yield final_response
200
+
201
+ theme = gr.themes.Citrus(
202
+ primary_hue="blue",
203
+ neutral_hue="slate",
204
+ )
205
+
206
+ examples = [
207
+ ["whats the trending social sentiment like for Nvidia"],
208
+ ["What's the latest news on Cisco Systems stock"],
209
+ ["Analyze technical indicators for Adobe, are they presenting buy or sell signals"],
210
+ ["Write me a smart sheet on the trending social sentiment and technical indicators for Nvidia"],
211
+ ["What are the best stocks to buy this month"],
212
+ ["What companies report earnings this week"],
213
+ ["What's Apple's current market cap"],
214
+ ["Analyze the technical indicators for Apple"],
215
+ ["Build an intrinsic value model for Apple"],
216
+ ["Make a table of Apple's stock price for the last 3 days"],
217
+ ["What is Apple's PE ratio and how does it compare to other companies in consumer electronics"],
218
+ ["How did Salesforce perform in its last earnings?"],
219
+ ["What is the average analyst price target for Nvidia"],
220
+ ["What is the outlook for the stock market in 2025"],
221
+ ["When does Nvidia next report earnings"],
222
+ ["What are the latest products from Apple"],
223
+ ["What is Tesla's current price-to-earnings ratio and how does it compare to other car manufacturers?"],
224
+ ["List the top 5 performing stocks in the S&P 500 this month"],
225
+ ["What is the dividend yield for Coca-Cola?"],
226
+ ["Which companies in the tech sector are announcing dividends this month?"],
227
+ ["Analyze the latest moving averages for Microsoft; are they indicating a trend reversal?"],
228
+ ["What is the latest guidance on revenue for Meta?"],
229
+ ["What is the current beta of Amazon stock and how does it compare to the industry average?"],
230
+ ["What are the top-rated ETFs for technology exposure this quarter?"]
231
+ ]
232
+
233
+ chatbot = gr.Chatbot(
234
+ label="IM.S",
235
+ avatar_images=[None, BOT_AVATAR],
236
+ show_copy_button=True,
237
+ layout="panel",
238
+ height=700
239
+ )
240
+
241
+ with gr.Blocks(theme=theme) as demo:
242
+ with gr.Column():
243
+ gr.Markdown("## IM.S - Building the Future of Investing")
244
+
245
+ with gr.Column(scale=3, min_width=600):
246
+ chat_interface = gr.ChatInterface(
247
+ fn=process_query,
248
+ chatbot=chatbot,
249
+ examples=examples
250
+ )
251
+
252
+ with gr.Column():
253
+ gr.Markdown('''
254
+ **Disclaimer**: The information provided by IM.S is for educational and informational purposes only and does not constitute financial, investment, or professional advice. By using this service, you acknowledge and agree that all decisions you make based on the information provided are made at your own risk. Neither IM.S nor quantineuron.com is liable for any financial losses or damages resulting from reliance on information provided by this chatbot.
255
+
256
+ By using IM.S, you agree to be bound by quantineuron.com’s [Terms of Service](https://quantineuron.com/disclaimer-statement/), [Terms and Conditions](https://quantineuron.com/terms-and-conditions/), [Data Protection and Privacy Policy](https://quantineuron.com/data-protection-and-privacy-policy/), [our discalimer statement](https://quantineuron.com/disclaimer-statement/) and this Disclaimer Statement. We recommend reviewing these documents carefully. Your continued use of this service confirms your acceptance of these terms and conditions, and it is your responsibility to stay informed of any updates or changes.
257
+
258
+ **Important Note**: Investing in financial markets carries risk, and it is possible to lose some or all of the invested capital. Always consider seeking advice from a qualified financial advisor.
259
+ ''')
260
+
261
+ demo.launch()
requirements.txt CHANGED
@@ -1 +1,11 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
 
 
 
 
 
 
1
+ huggingface_hub==0.25.2
2
+ sentence-transformers
3
+ gradio
4
+ beautifulsoup4
5
+ requests
6
+ huggingface_hub
7
+ langchain
8
+ chromadb
9
+ numpy
10
+ scikit-learn
11
+ plotly