James MacQuillan commited on
Commit
a0d1332
ยท
1 Parent(s): 2287af4
Files changed (1) hide show
  1. app.py +44 -16
app.py CHANGED
@@ -198,32 +198,61 @@ def process_query(user_input, history):
198
  yield 'Preparing your request ๐Ÿ› ๏ธ'
199
 
200
  # Step 1: Generate a search term based on the user query
201
- stream_search = client.chat_completion(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202
  model="Qwen/Qwen2.5-72B-Instruct",
203
- messages=[{"role": "user", "content": f"Based on this chat history {history} the user's request '{user_input}', and this vector database {search_texts}, suggest a Google search term in a single line without specific dates; use 'this year', 'this month', etc. INCLUDE NOTHING IN YOUR RESPONSE EXCEPT THE RELEVANT SEARCH RESULT. EXAMPLE: USER: WHAT IS THE CURRENT PRICE OF COCA COLA STOCK. YOUR RESPONSE: WHAT IS THE CURRENT PRICE OF COCA COLA STOCK. here is their investor type."}],
204
- max_tokens=400,
205
- stream=True
206
  )
207
 
208
- # Collect the search term
209
- search_query = ""
210
- for chunk in stream_search:
211
- content = chunk.choices[0].delta.content or ''
212
- search_query += content
213
 
214
- # Step 2: Perform the web search with the generated term
215
- yield 'Searching the web for relevant information ๐ŸŒ'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216
 
217
 
218
- search_results = search(search_query)
219
 
220
  # Format results as a JSON string for model input
221
- search_results_str = json.dumps(search_results)
222
  yield 'thinking...'
223
  # Step 3: Generate a response using the search results
224
  response = client.chat_completion(
225
  model="Qwen/Qwen2.5-72B-Instruct",
226
- messages=[{"role": "user", "content": f"Using the search results: {search_results_str} and chat history {history}, this vector database on health checks {retrieved_texts} answer the user's query '{user_input}' in a concise, precise way, using numerical data if available. GIVE DETAILED RESPONSES LIKE A STOCK ANALYST. THEY HAVE TOLD US HOW THEY INVEST SO WHEN YOU ANALYSE THINGS AND EXPLAIN, TAILOR IT TO THEM, AND REFERENCE THEIR TYPE IN YOUR ANSWERS - {investor_type_value}"}],
227
  max_tokens=3000,
228
  stream=True
229
  )
@@ -275,8 +304,7 @@ chatbot = gr.Chatbot(
275
  avatar_images=[None, BOT_AVATAR],
276
  show_copy_button=True,
277
  layout="panel",
278
- height=700,
279
-
280
  )
281
 
282
  with gr.Blocks(theme=theme) as demo:
 
198
  yield 'Preparing your request ๐Ÿ› ๏ธ'
199
 
200
  # Step 1: Generate a search term based on the user query
201
+ messages = [
202
+ {
203
+ "role": "user",
204
+ "content": f"""Based on this chat history {history} the user's request '{user_input}', and this vector database {search_texts} - ignore it unless it relates to the user input, provide:
205
+ - The number of searches needed to answer the query
206
+ - The specific search terms required for each query, formatted as a Python object.
207
+
208
+ The response should follow this exact format (example shown):
209
+ {{ "number_of_searches_needed": 4,
210
+ "searches": ["First search term", "Second search term", "Third search term", "Fourth search term"]
211
+ }}
212
+
213
+ Return only the data in the specified format without additional text or explanation.
214
+ IMPORTANT: NEVER ASSUME THE DATE IN ANY OF YOUR SEARCHES UNLESS THE USER GIVES YOU ONE, YOU DONT KNOW WHAT THE DATE IS BECAUSE OF YOUR KNOWLEDGE CUTOFF. ONLY SEARCH FOR RELEVANT THINGS BASED ON THE USER REQUEST FOR EXAMPLE IF THEY ASK ABOUT STOCK PRICE ONL;Y SEARCH FOR STOCK PRICE
215
+ important: if the user input isnt complex use less searches in the intrest of time
216
+ """
217
+ }
218
+ ]
219
+
220
+ # Create streaming chat completion request
221
+ stream = client.chat.completions.create(
222
  model="Qwen/Qwen2.5-72B-Instruct",
223
+ messages=messages,
224
+ max_tokens=500,
225
+ stream=False
226
  )
227
 
 
 
 
 
 
228
 
229
+ #take the response from the model and convert it into a list of searches
230
+ returned = stream.choices[0].message.content
231
+ dictionary_returned = json.loads(returned)
232
+ searches_needed = dictionary_returned['searches']
233
+ yield f'Searching the web for {searches_needed} ๐ŸŒ'
234
+ completed_search = []
235
+
236
+
237
+ for value in searches_needed:
238
+ print(f'searching for {value}')
239
+ var = search(value)
240
+ completed_search.append(json.dumps(var))
241
+
242
+
243
+
244
+
245
 
246
 
247
+
248
 
249
  # Format results as a JSON string for model input
250
+
251
  yield 'thinking...'
252
  # Step 3: Generate a response using the search results
253
  response = client.chat_completion(
254
  model="Qwen/Qwen2.5-72B-Instruct",
255
+ messages=[{"role": "user", "content": f"Using the search results: {completed_search} and chat history {history}, this vector database on health checks {retrieved_texts} answer the user's query '{user_input}' in an concise way, using numerical data if available, follow the instructions from the vector database if they apply. tailor it to them - {investor_type_value}"}],
256
  max_tokens=3000,
257
  stream=True
258
  )
 
304
  avatar_images=[None, BOT_AVATAR],
305
  show_copy_button=True,
306
  layout="panel",
307
+ height=700
 
308
  )
309
 
310
  with gr.Blocks(theme=theme) as demo: