Spaces:
Sleeping
Sleeping
James MacQuillan
commited on
Commit
ยท
a0d1332
1
Parent(s):
2287af4
push
Browse files
app.py
CHANGED
@@ -198,32 +198,61 @@ def process_query(user_input, history):
|
|
198 |
yield 'Preparing your request ๐ ๏ธ'
|
199 |
|
200 |
# Step 1: Generate a search term based on the user query
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
model="Qwen/Qwen2.5-72B-Instruct",
|
203 |
-
messages=
|
204 |
-
max_tokens=
|
205 |
-
stream=
|
206 |
)
|
207 |
|
208 |
-
# Collect the search term
|
209 |
-
search_query = ""
|
210 |
-
for chunk in stream_search:
|
211 |
-
content = chunk.choices[0].delta.content or ''
|
212 |
-
search_query += content
|
213 |
|
214 |
-
#
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
|
218 |
-
|
219 |
|
220 |
# Format results as a JSON string for model input
|
221 |
-
|
222 |
yield 'thinking...'
|
223 |
# Step 3: Generate a response using the search results
|
224 |
response = client.chat_completion(
|
225 |
model="Qwen/Qwen2.5-72B-Instruct",
|
226 |
-
messages=[{"role": "user", "content": f"Using the search results: {
|
227 |
max_tokens=3000,
|
228 |
stream=True
|
229 |
)
|
@@ -275,8 +304,7 @@ chatbot = gr.Chatbot(
|
|
275 |
avatar_images=[None, BOT_AVATAR],
|
276 |
show_copy_button=True,
|
277 |
layout="panel",
|
278 |
-
height=700
|
279 |
-
|
280 |
)
|
281 |
|
282 |
with gr.Blocks(theme=theme) as demo:
|
|
|
198 |
yield 'Preparing your request ๐ ๏ธ'
|
199 |
|
200 |
# Step 1: Generate a search term based on the user query
|
201 |
+
messages = [
|
202 |
+
{
|
203 |
+
"role": "user",
|
204 |
+
"content": f"""Based on this chat history {history} the user's request '{user_input}', and this vector database {search_texts} - ignore it unless it relates to the user input, provide:
|
205 |
+
- The number of searches needed to answer the query
|
206 |
+
- The specific search terms required for each query, formatted as a Python object.
|
207 |
+
|
208 |
+
The response should follow this exact format (example shown):
|
209 |
+
{{ "number_of_searches_needed": 4,
|
210 |
+
"searches": ["First search term", "Second search term", "Third search term", "Fourth search term"]
|
211 |
+
}}
|
212 |
+
|
213 |
+
Return only the data in the specified format without additional text or explanation.
|
214 |
+
IMPORTANT: NEVER ASSUME THE DATE IN ANY OF YOUR SEARCHES UNLESS THE USER GIVES YOU ONE, YOU DONT KNOW WHAT THE DATE IS BECAUSE OF YOUR KNOWLEDGE CUTOFF. ONLY SEARCH FOR RELEVANT THINGS BASED ON THE USER REQUEST FOR EXAMPLE IF THEY ASK ABOUT STOCK PRICE ONL;Y SEARCH FOR STOCK PRICE
|
215 |
+
important: if the user input isnt complex use less searches in the intrest of time
|
216 |
+
"""
|
217 |
+
}
|
218 |
+
]
|
219 |
+
|
220 |
+
# Create streaming chat completion request
|
221 |
+
stream = client.chat.completions.create(
|
222 |
model="Qwen/Qwen2.5-72B-Instruct",
|
223 |
+
messages=messages,
|
224 |
+
max_tokens=500,
|
225 |
+
stream=False
|
226 |
)
|
227 |
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
+
#take the response from the model and convert it into a list of searches
|
230 |
+
returned = stream.choices[0].message.content
|
231 |
+
dictionary_returned = json.loads(returned)
|
232 |
+
searches_needed = dictionary_returned['searches']
|
233 |
+
yield f'Searching the web for {searches_needed} ๐'
|
234 |
+
completed_search = []
|
235 |
+
|
236 |
+
|
237 |
+
for value in searches_needed:
|
238 |
+
print(f'searching for {value}')
|
239 |
+
var = search(value)
|
240 |
+
completed_search.append(json.dumps(var))
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
|
246 |
|
247 |
+
|
248 |
|
249 |
# Format results as a JSON string for model input
|
250 |
+
|
251 |
yield 'thinking...'
|
252 |
# Step 3: Generate a response using the search results
|
253 |
response = client.chat_completion(
|
254 |
model="Qwen/Qwen2.5-72B-Instruct",
|
255 |
+
messages=[{"role": "user", "content": f"Using the search results: {completed_search} and chat history {history}, this vector database on health checks {retrieved_texts} answer the user's query '{user_input}' in an concise way, using numerical data if available, follow the instructions from the vector database if they apply. tailor it to them - {investor_type_value}"}],
|
256 |
max_tokens=3000,
|
257 |
stream=True
|
258 |
)
|
|
|
304 |
avatar_images=[None, BOT_AVATAR],
|
305 |
show_copy_button=True,
|
306 |
layout="panel",
|
307 |
+
height=700
|
|
|
308 |
)
|
309 |
|
310 |
with gr.Blocks(theme=theme) as demo:
|