import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel import torch def merge(base_model, trained_adapter, token): base = AutoModelForCausalLM.from_pretrained( base_model, torch_dtype=torch.float16, low_cpu_mem_usage=True, token=token ) model = PeftModel.from_pretrained(base, trained_adapter, token=token) try: tokenizer = AutoTokenizer.from_pretrained(base_model, token=token) except RecursionError: tokenizer = AutoTokenizer.from_pretrained( base_model, unk_token="", token=token ) model = model.merge_and_unload() print("Saving target model") model.push_to_hub(trained_adapter, token=token) tokenizer.push_to_hub(trained_adapter, token=token) return gr.Markdown.update( value="Model successfully merged and pushed! Please shutdown/pause this space" ) with gr.Blocks() as demo: gr.Markdown("## AutoTrain Merge Adapter") gr.Markdown("Please duplicate this space and attach a GPU in order to use it.") token = gr.Textbox( label="Hugging Face Write Token", value="", lines=1, max_lines=1, interactive=True, type="password", ) base_model = gr.Textbox( label="Base Model (e.g. meta-llama/Llama-2-7b-chat-hf)", value="", lines=1, max_lines=1, interactive=True, ) trained_adapter = gr.Textbox( label="Trained Adapter Model (e.g. username/autotrain-my-llama)", value="", lines=1, max_lines=1, interactive=True, ) submit = gr.Button(value="Merge & Push") op = gr.Markdown(interactive=False) submit.click(merge, inputs=[base_model, trained_adapter, token], outputs=[op]) if __name__ == "__main__": demo.launch()