Spaces:
Runtime error
Runtime error
File size: 1,303 Bytes
60b210b f607038 60b210b b1a6a72 08aebc6 f607038 54d342c f607038 54d342c f607038 08aebc6 f607038 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import os
import gradio as gr
import librosa
import torch
from transformers import WhisperForConditionalGeneration, WhisperProcessor
hf_token = os.getenv("hf_token")
if hf_token is None:
raise ValueError(
"Hugging Face token not found. Please set the 'hf_token' environment variable."
)
processor = WhisperProcessor.from_pretrained(
"openai/whisper-small",
language="Indonesian",
task="transcribe",
token=hf_token,
)
model = WhisperForConditionalGeneration.from_pretrained(
"avalonai/whisper-small-jv", token=hf_token
)
def transcribe(audio):
audio, sampling_rate = librosa.load(audio, sr=16000)
audio_input = processor(audio, return_tensors="pt", sampling_rate=16000)
input_values = audio_input.input_features
with torch.no_grad():
generated_ids = model.generate(input_values)
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
return transcription[0]
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs="text",
title="Speech-to-text on Javanese Language Demo",
description="Ini adalah platform untuk pengujian model speech-to-text pada bahasa Jawa oleh Avalon AI. Silahkan coba dengan mengucapkan kalimat",
)
iface.launch()
|