Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -81,23 +81,16 @@ transform = transforms.Compose([
|
|
81 |
|
82 |
# Define the prediction function
|
83 |
def predict_count(input_image):
|
84 |
-
# Preprocess the input image
|
85 |
image = transform(input_image).unsqueeze(0).cpu()
|
86 |
-
|
87 |
-
# Perform the forward pass
|
88 |
output = csrmodel(image)
|
89 |
-
|
90 |
-
# Calculate the predicted count
|
91 |
predicted_count = int(output.detach().cpu().sum().numpy())
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
# Define the input and output interfaces for Gradio
|
96 |
-
input_interface = gr.inputs.Image()
|
97 |
-
output_interface = gr.outputs.Textbox()
|
98 |
-
|
99 |
-
# Create the Gradio app
|
100 |
-
grapp = gr.Interface(fn=predict_count, inputs=input_interface, outputs=output_interface)
|
101 |
|
|
|
102 |
# Launch the app
|
103 |
grapp.launch()
|
|
|
81 |
|
82 |
# Define the prediction function
|
83 |
def predict_count(input_image):
|
|
|
84 |
image = transform(input_image).unsqueeze(0).cpu()
|
|
|
|
|
85 |
output = csrmodel(image)
|
|
|
|
|
86 |
predicted_count = int(output.detach().cpu().sum().numpy())
|
87 |
+
density_map = output.detach().cpu().numpy().reshape(output.shape[2], output.shape[3])
|
88 |
+
density_map_color = plt.cm.jet(density_map / np.max(density_map))
|
89 |
+
return predicted_count, density_map_color
|
90 |
|
91 |
+
output_interface = gr.outputs.Textbox(label="Predicted Count")
|
92 |
+
density_map_interface = gr.outputs.Image(label="Density Map")
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
grapp = gr.Interface(fn=predict_count, inputs=input_interface, outputs=[output_interface, density_map_interface])
|
95 |
# Launch the app
|
96 |
grapp.launch()
|