import gradio as gr TAG_PLACEHOLDER = "funk, pop, soul, rock, melodic, guitar, drums, bass, keyboard, percussion, 105 BPM, energetic, upbeat, groovy, vibrant, dynamic" LYRIC_PLACEHOLDER = """[verse] Neon lights they flicker bright City hums in dead of night Rhythms pulse through concrete veins Lost in echoes of refrains [verse] Bassline groovin' in my chest Heartbeats match the city's zest Electric whispers fill the air Synthesized dreams everywhere [chorus] Turn it up and let it flow Feel the fire let it grow In this rhythm we belong Hear the night sing out our song [verse] Guitar strings they start to weep Wake the soul from silent sleep Every note a story told In this night we’re bold and gold [bridge] Voices blend in harmony Lost in pure cacophony Timeless echoes timeless cries Soulful shouts beneath the skies [verse] Keyboard dances on the keys Melodies on evening breeze Catch the tune and hold it tight In this moment we take flight """ def create_output_ui(task_name="Text2Music"): # For many consumer-grade GPU devices, only one batch can be run output_audio1 = gr.Audio(type="filepath", label=f"{task_name} Generated Audio 1") # output_audio2 = gr.Audio(type="filepath", label="Generated Audio 2") with gr.Accordion(f"{task_name} Parameters", open=False): input_params_json = gr.JSON(label=f"{task_name} Parameters") # outputs = [output_audio1, output_audio2] outputs = [output_audio1] return outputs, input_params_json def dump_func(*args): print(args) return [] def create_text2music_ui( gr, text2music_process_func, sample_data_func=None, ): with gr.Row(): with gr.Column(): with gr.Row(equal_height=True): audio_duration = gr.Slider(-1, 240.0, step=0.00001, value=180, label="Audio Duration", interactive=True, info="-1 means random duration (30 ~ 240).", scale=9) sample_bnt = gr.Button("Sample", variant="primary", scale=1) prompt = gr.Textbox(lines=2, label="Tags", max_lines=4, placeholder=TAG_PLACEHOLDER, info="Support tags, descriptions, and scene. Use commas to separate different tags.") lyrics = gr.Textbox(lines=9, label="Lyrics", max_lines=13, placeholder=LYRIC_PLACEHOLDER, info="Support lyric structure tags like [verse], [chorus], and [bridge] to separate different parts of the lyrics.\nUse [instrumental] or [inst] to generate instrumental music. Not support genre structure tag in lyrics") with gr.Accordion("Basic Settings", open=True): infer_step = gr.Slider(minimum=1, maximum=1000, step=1, value=60, label="Infer Steps", interactive=True) guidance_scale = gr.Slider(minimum=0.0, maximum=200.0, step=0.1, value=15.0, label="Guidance Scale", interactive=True, info="When guidance_scale_lyric > 1 and guidance_scale_text > 1, the guidance scale will not be applied.") guidance_scale_text = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=5.0, label="Guidance Scale Text", interactive=True, info="Guidance scale for text condition. It can only apply to cfg. set guidance_scale_text=5.0, guidance_scale_lyric=1.5 for start") guidance_scale_lyric = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=1.5, label="Guidance Scale Lyric", interactive=True) manual_seeds = gr.Textbox(label="manual seeds (default None)", placeholder="1,2,3,4", value=None, info="Seed for the generation") with gr.Accordion("Advanced Settings", open=False): scheduler_type = gr.Radio(["euler", "heun"], value="euler", label="Scheduler Type", elem_id="scheduler_type", info="Scheduler type for the generation. euler is recommended. heun will take more time.") cfg_type = gr.Radio(["cfg", "apg", "cfg_star"], value="apg", label="CFG Type", elem_id="cfg_type", info="CFG type for the generation. apg is recommended. cfg and cfg_star are almost the same.") use_erg_tag = gr.Checkbox(label="use ERG for tag", value=True, info="Use Entropy Rectifying Guidance for tag. It will multiple a temperature to the attention to make a weaker tag condition and make better diversity.") use_erg_lyric = gr.Checkbox(label="use ERG for lyric", value=True, info="The same but apply to lyric encoder's attention.") use_erg_diffusion = gr.Checkbox(label="use ERG for diffusion", value=True, info="The same but apply to diffusion model's attention.") omega_scale = gr.Slider(minimum=-100.0, maximum=100.0, step=0.1, value=10.0, label="Granularity Scale", interactive=True, info="Granularity scale for the generation. Higher values can reduce artifacts") guidance_interval = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Guidance Interval", interactive=True, info="Guidance interval for the generation. 0.5 means only apply guidance in the middle steps (0.25 * infer_steps to 0.75 * infer_steps)") guidance_interval_decay = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.0, label="Guidance Interval Decay", interactive=True, info="Guidance interval decay for the generation. Guidance scale will decay from guidance_scale to min_guidance_scale in the interval. 0.0 means no decay.") min_guidance_scale = gr.Slider(minimum=0.0, maximum=200.0, step=0.1, value=3.0, label="Min Guidance Scale", interactive=True, info="Min guidance scale for guidance interval decay's end scale") oss_steps = gr.Textbox(label="OSS Steps", placeholder="16, 29, 52, 96, 129, 158, 172, 183, 189, 200", value=None, info="Optimal Steps for the generation. But not test well") text2music_bnt = gr.Button(variant="primary") with gr.Column(): outputs, input_params_json = create_output_ui() with gr.Tab("retake"): retake_variance = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.2, label="variance", info="Variance for the retake. 0.0 means no variance. 1.0 means full variance.") retake_seeds = gr.Textbox(label="retake seeds (default None)", placeholder="", value=None, info="Seed for the retake.") retake_bnt = gr.Button(variant="primary") retake_outputs, retake_input_params_json = create_output_ui("Retake") def retake_process_func(json_data, retake_variance, retake_seeds): return text2music_process_func( json_data["audio_duration"], json_data["prompt"], json_data["lyrics"], json_data["infer_step"], json_data["guidance_scale"], json_data["scheduler_type"], json_data["cfg_type"], json_data["omega_scale"], ", ".join(map(str, json_data["actual_seeds"])), json_data["guidance_interval"], json_data["guidance_interval_decay"], json_data["min_guidance_scale"], json_data["use_erg_tag"], json_data["use_erg_lyric"], json_data["use_erg_diffusion"], ", ".join(map(str, json_data["oss_steps"])), json_data["guidance_scale_text"] if "guidance_scale_text" in json_data else 0.0, json_data["guidance_scale_lyric"] if "guidance_scale_lyric" in json_data else 0.0, retake_seeds=retake_seeds, retake_variance=retake_variance, task="retake", ) retake_bnt.click( fn=retake_process_func, inputs=[ input_params_json, retake_variance, retake_seeds, ], outputs=retake_outputs + [retake_input_params_json], ) with gr.Tab("repainting"): pass with gr.Tab("edit"): pass def sample_data(): json_data = sample_data_func() return ( json_data["audio_duration"], json_data["prompt"], json_data["lyrics"], json_data["infer_step"], json_data["guidance_scale"], json_data["scheduler_type"], json_data["cfg_type"], json_data["omega_scale"], ", ".join(map(str, json_data["actual_seeds"])), json_data["guidance_interval"], json_data["guidance_interval_decay"], json_data["min_guidance_scale"], json_data["use_erg_tag"], json_data["use_erg_lyric"], json_data["use_erg_diffusion"], ", ".join(map(str, json_data["oss_steps"])), json_data["guidance_scale_text"] if "guidance_scale_text" in json_data else 0.0, json_data["guidance_scale_lyric"] if "guidance_scale_lyric" in json_data else 0.0, ) sample_bnt.click( sample_data, outputs=[ audio_duration, prompt, lyrics, infer_step, guidance_scale, scheduler_type, cfg_type, omega_scale, manual_seeds, guidance_interval, guidance_interval_decay, min_guidance_scale, use_erg_tag, use_erg_lyric, use_erg_diffusion, oss_steps, guidance_scale_text, guidance_scale_lyric, ], ) text2music_bnt.click( fn=text2music_process_func, inputs=[ audio_duration, prompt, lyrics, infer_step, guidance_scale, scheduler_type, cfg_type, omega_scale, manual_seeds, guidance_interval, guidance_interval_decay, min_guidance_scale, use_erg_tag, use_erg_lyric, use_erg_diffusion, oss_steps, guidance_scale_text, guidance_scale_lyric, ], outputs=outputs + [input_params_json] ) def create_main_demo_ui( text2music_process_func=dump_func, sample_data_func=dump_func, ): with gr.Blocks( title="FusicModel 1.0 DEMO", ) as demo: gr.Markdown( """

FusicModel 1.0 DEMO

""" ) with gr.Tab("text2music"): create_text2music_ui( gr=gr, text2music_process_func=text2music_process_func, sample_data_func=sample_data_func, ) return demo if __name__ == "__main__": demo = create_main_demo_ui() demo.launch( server_name="0.0.0.0", server_port=7860, )