Spaces:
Running
WaifuDiffusion Tagger now supports uploading multiple images
Browse files1. Changed the interface’s "Image" field to "Gallery," now supporting multi-image uploads.
2. Added a "Download ZIP" option for results, allowing all reverse-engineered TXT files from the images to be compressed into a ZIP file for a single download.
3. Other fields in the "Output" section currently only display results for the first image.
4. The "Examples" feature is temporarily disabled, as it encounters issues when used with the Gallery view, and a solution has not yet been found.
5. Add a checkbox: "Merge characters into the string output," with the default set to checked.
6. Add two additional tag fields, Prepend and Append. The content is comma-separated and will automatically be added to the string output.
7. Upgrade the project's Gradio version to 5.6.0
8. Add an Upload Images button to allow adding images to the gallery at any time.
9. Add a Remove Selected Image button to remove the currently selected image from the gallery when clicked.
10. Add support for automatically displaying the image's output strings, rating, characters, and tags when selecting an image from the gallery.
@@ -4,7 +4,7 @@ emoji: 💬
|
|
4 |
colorFrom: blue
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: blue
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.6.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
@@ -7,6 +7,10 @@ import numpy as np
|
|
7 |
import onnxruntime as rt
|
8 |
import pandas as pd
|
9 |
from PIL import Image
|
|
|
|
|
|
|
|
|
10 |
|
11 |
TITLE = "WaifuDiffusion Tagger"
|
12 |
DESCRIPTION = """
|
@@ -56,6 +60,8 @@ kaomojis = [
|
|
56 |
"||_||",
|
57 |
]
|
58 |
|
|
|
|
|
59 |
|
60 |
def parse_args() -> argparse.Namespace:
|
61 |
parser = argparse.ArgumentParser()
|
@@ -130,7 +136,9 @@ class Predictor:
|
|
130 |
self.last_loaded_repo = model_repo
|
131 |
self.model = model
|
132 |
|
133 |
-
def prepare_image(self,
|
|
|
|
|
134 |
target_size = self.model_target_size
|
135 |
|
136 |
canvas = Image.new("RGBA", image.size, (255, 255, 255))
|
@@ -161,61 +169,149 @@ class Predictor:
|
|
161 |
|
162 |
return np.expand_dims(image_array, axis=0)
|
163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
def predict(
|
165 |
self,
|
166 |
-
|
167 |
model_repo,
|
168 |
general_thresh,
|
169 |
general_mcut_enabled,
|
170 |
character_thresh,
|
171 |
character_mcut_enabled,
|
|
|
|
|
|
|
172 |
):
|
173 |
self.load_model(model_repo)
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
|
221 |
def main():
|
@@ -225,10 +321,10 @@ def main():
|
|
225 |
|
226 |
dropdown_list = [
|
227 |
SWINV2_MODEL_DSV3_REPO,
|
|
|
228 |
CONV_MODEL_DSV3_REPO,
|
229 |
VIT_MODEL_DSV3_REPO,
|
230 |
VIT_LARGE_MODEL_DSV3_REPO,
|
231 |
-
EVA02_LARGE_MODEL_DSV3_REPO,
|
232 |
MOAT_MODEL_DSV2_REPO,
|
233 |
SWIN_MODEL_DSV2_REPO,
|
234 |
CONV_MODEL_DSV2_REPO,
|
@@ -244,7 +340,14 @@ def main():
|
|
244 |
gr.Markdown(value=DESCRIPTION)
|
245 |
with gr.Row():
|
246 |
with gr.Column(variant="panel"):
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
model_repo = gr.Dropdown(
|
249 |
dropdown_list,
|
250 |
value=SWINV2_MODEL_DSV3_REPO,
|
@@ -278,27 +381,40 @@ def main():
|
|
278 |
label="Use MCut threshold",
|
279 |
scale=1,
|
280 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
with gr.Row():
|
282 |
clear = gr.ClearButton(
|
283 |
components=[
|
284 |
-
|
285 |
model_repo,
|
286 |
general_thresh,
|
287 |
general_mcut_enabled,
|
288 |
character_thresh,
|
289 |
character_mcut_enabled,
|
|
|
|
|
|
|
290 |
],
|
291 |
variant="secondary",
|
292 |
size="lg",
|
293 |
)
|
294 |
-
submit = gr.Button(value="Submit", variant="primary", size="lg")
|
295 |
with gr.Column(variant="panel"):
|
296 |
-
|
|
|
297 |
rating = gr.Label(label="Rating")
|
298 |
character_res = gr.Label(label="Output (characters)")
|
299 |
general_res = gr.Label(label="Output (tags)")
|
300 |
clear.add(
|
301 |
[
|
|
|
302 |
sorted_general_strings,
|
303 |
rating,
|
304 |
character_res,
|
@@ -306,33 +422,47 @@ def main():
|
|
306 |
]
|
307 |
)
|
308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
submit.click(
|
310 |
predictor.predict,
|
311 |
inputs=[
|
312 |
-
|
313 |
-
model_repo,
|
314 |
-
general_thresh,
|
315 |
-
general_mcut_enabled,
|
316 |
-
character_thresh,
|
317 |
-
character_mcut_enabled,
|
318 |
-
],
|
319 |
-
outputs=[sorted_general_strings, rating, character_res, general_res],
|
320 |
-
)
|
321 |
-
|
322 |
-
gr.Examples(
|
323 |
-
[["power.jpg", SWINV2_MODEL_DSV3_REPO, 0.35, False, 0.85, False]],
|
324 |
-
inputs=[
|
325 |
-
image,
|
326 |
model_repo,
|
327 |
general_thresh,
|
328 |
general_mcut_enabled,
|
329 |
character_thresh,
|
330 |
character_mcut_enabled,
|
|
|
|
|
|
|
331 |
],
|
|
|
332 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
demo.queue(max_size=10)
|
335 |
-
demo.launch()
|
336 |
|
337 |
|
338 |
if __name__ == "__main__":
|
|
|
7 |
import onnxruntime as rt
|
8 |
import pandas as pd
|
9 |
from PIL import Image
|
10 |
+
import traceback
|
11 |
+
import tempfile
|
12 |
+
import zipfile
|
13 |
+
from datetime import datetime
|
14 |
|
15 |
TITLE = "WaifuDiffusion Tagger"
|
16 |
DESCRIPTION = """
|
|
|
60 |
"||_||",
|
61 |
]
|
62 |
|
63 |
+
tag_results = {}
|
64 |
+
|
65 |
|
66 |
def parse_args() -> argparse.Namespace:
|
67 |
parser = argparse.ArgumentParser()
|
|
|
136 |
self.last_loaded_repo = model_repo
|
137 |
self.model = model
|
138 |
|
139 |
+
def prepare_image(self, path):
|
140 |
+
image = Image.open(path)
|
141 |
+
image = image.convert("RGBA")
|
142 |
target_size = self.model_target_size
|
143 |
|
144 |
canvas = Image.new("RGBA", image.size, (255, 255, 255))
|
|
|
169 |
|
170 |
return np.expand_dims(image_array, axis=0)
|
171 |
|
172 |
+
def create_file(self, text: str, directory: str, fileName: str) -> str:
|
173 |
+
# Write the text to a file
|
174 |
+
with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file:
|
175 |
+
file.write(text)
|
176 |
+
|
177 |
+
return file.name
|
178 |
+
|
179 |
def predict(
|
180 |
self,
|
181 |
+
gallery,
|
182 |
model_repo,
|
183 |
general_thresh,
|
184 |
general_mcut_enabled,
|
185 |
character_thresh,
|
186 |
character_mcut_enabled,
|
187 |
+
characters_merge_enabled,
|
188 |
+
additional_tags_prepend,
|
189 |
+
additional_tags_append,
|
190 |
):
|
191 |
self.load_model(model_repo)
|
192 |
+
# Result
|
193 |
+
txt_infos = []
|
194 |
+
output_dir = tempfile.mkdtemp()
|
195 |
+
if not os.path.exists(output_dir):
|
196 |
+
os.makedirs(output_dir)
|
197 |
+
|
198 |
+
sorted_general_strings = ""
|
199 |
+
rating = None
|
200 |
+
character_res = None
|
201 |
+
general_res = None
|
202 |
+
|
203 |
+
tag_results.clear()
|
204 |
+
|
205 |
+
prepend_list = [tag.strip() for tag in additional_tags_prepend.split(",") if tag.strip()]
|
206 |
+
append_list = [tag.strip() for tag in additional_tags_append.split(",") if tag.strip()]
|
207 |
+
if prepend_list and append_list:
|
208 |
+
append_list = [item for item in append_list if item not in prepend_list]
|
209 |
+
|
210 |
+
for idx, value in enumerate(gallery):
|
211 |
+
try:
|
212 |
+
image_path = value[0]
|
213 |
+
image_name = os.path.splitext(os.path.basename(image_path))[0]
|
214 |
+
|
215 |
+
image = self.prepare_image(image_path)
|
216 |
+
|
217 |
+
input_name = self.model.get_inputs()[0].name
|
218 |
+
label_name = self.model.get_outputs()[0].name
|
219 |
+
preds = self.model.run([label_name], {input_name: image})[0]
|
220 |
+
|
221 |
+
labels = list(zip(self.tag_names, preds[0].astype(float)))
|
222 |
+
|
223 |
+
# First 4 labels are actually ratings: pick one with argmax
|
224 |
+
ratings_names = [labels[i] for i in self.rating_indexes]
|
225 |
+
rating = dict(ratings_names)
|
226 |
+
|
227 |
+
# Then we have general tags: pick any where prediction confidence > threshold
|
228 |
+
general_names = [labels[i] for i in self.general_indexes]
|
229 |
+
|
230 |
+
if general_mcut_enabled:
|
231 |
+
general_probs = np.array([x[1] for x in general_names])
|
232 |
+
general_thresh = mcut_threshold(general_probs)
|
233 |
+
|
234 |
+
general_res = [x for x in general_names if x[1] > general_thresh]
|
235 |
+
general_res = dict(general_res)
|
236 |
+
|
237 |
+
# Everything else is characters: pick any where prediction confidence > threshold
|
238 |
+
character_names = [labels[i] for i in self.character_indexes]
|
239 |
+
|
240 |
+
if character_mcut_enabled:
|
241 |
+
character_probs = np.array([x[1] for x in character_names])
|
242 |
+
character_thresh = mcut_threshold(character_probs)
|
243 |
+
character_thresh = max(0.15, character_thresh)
|
244 |
+
|
245 |
+
character_res = [x for x in character_names if x[1] > character_thresh]
|
246 |
+
character_res = dict(character_res)
|
247 |
+
character_list = list(character_res.keys())
|
248 |
+
|
249 |
+
sorted_general_list = sorted(
|
250 |
+
general_res.items(),
|
251 |
+
key=lambda x: x[1],
|
252 |
+
reverse=True,
|
253 |
+
)
|
254 |
+
sorted_general_list = [x[0] for x in sorted_general_list]
|
255 |
+
#Remove values from character_list that already exist in sorted_general_list
|
256 |
+
character_list = [item for item in character_list if item not in sorted_general_list]
|
257 |
+
#Remove values from sorted_general_list that already exist in prepend_list or append_list
|
258 |
+
if prepend_list:
|
259 |
+
sorted_general_list = [item for item in sorted_general_list if item not in prepend_list]
|
260 |
+
if append_list:
|
261 |
+
sorted_general_list = [item for item in sorted_general_list if item not in append_list]
|
262 |
+
|
263 |
+
sorted_general_strings = ", ".join((character_list if characters_merge_enabled else []) + prepend_list + sorted_general_list + append_list).replace("(", "\(").replace(")", "\)")
|
264 |
+
|
265 |
+
txt_file = self.create_file(sorted_general_strings, output_dir, image_name + ".txt")
|
266 |
+
txt_infos.append({"path":txt_file, "name": image_name + ".txt"})
|
267 |
+
|
268 |
+
tag_results[image_path] = { "strings": sorted_general_strings, "rating": rating, "character_res": character_res, "general_res": general_res }
|
269 |
+
|
270 |
+
except Exception as e:
|
271 |
+
print(traceback.format_exc())
|
272 |
+
print("Error predict: " + str(e))
|
273 |
+
|
274 |
+
# Result
|
275 |
+
download = []
|
276 |
+
if txt_infos is not None and len(txt_infos) > 0:
|
277 |
+
downloadZipPath = os.path.join(output_dir, "images-tagger-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip")
|
278 |
+
with zipfile.ZipFile(downloadZipPath, 'w', zipfile.ZIP_DEFLATED) as taggers_zip:
|
279 |
+
for info in txt_infos:
|
280 |
+
# Get file name from lookup
|
281 |
+
taggers_zip.write(info["path"], arcname=info["name"])
|
282 |
+
download.append(downloadZipPath)
|
283 |
+
|
284 |
+
return download, sorted_general_strings, rating, character_res, general_res
|
285 |
+
|
286 |
+
def get_selection_from_gallery(gallery: list, selected_state: gr.SelectData):
|
287 |
+
if not selected_state:
|
288 |
+
return selected_state
|
289 |
+
|
290 |
+
tag_result = { "strings": "", "rating": "", "character_res": "", "general_res": "" }
|
291 |
+
if selected_state.value["image"]["path"] in tag_results:
|
292 |
+
tag_result = tag_results[selected_state.value["image"]["path"]]
|
293 |
+
|
294 |
+
return (selected_state.value["image"]["path"], selected_state.value["caption"]), tag_result["strings"], tag_result["rating"], tag_result["character_res"], tag_result["general_res"]
|
295 |
+
|
296 |
+
def add_images_to_gallery(gallery: list, images):
|
297 |
+
if gallery is None:
|
298 |
+
gallery = []
|
299 |
+
if not images:
|
300 |
+
return gallery
|
301 |
+
|
302 |
+
# Combine the new images with the existing gallery images
|
303 |
+
gallery.extend(images)
|
304 |
+
return gallery
|
305 |
+
|
306 |
+
def remove_image_from_gallery(gallery: list, selected_image: str):
|
307 |
+
if not gallery or not selected_image:
|
308 |
+
return gallery
|
309 |
+
|
310 |
+
selected_image = eval(selected_image)
|
311 |
+
# Remove the selected image from the gallery
|
312 |
+
if selected_image in gallery:
|
313 |
+
gallery.remove(selected_image)
|
314 |
+
return gallery
|
315 |
|
316 |
|
317 |
def main():
|
|
|
321 |
|
322 |
dropdown_list = [
|
323 |
SWINV2_MODEL_DSV3_REPO,
|
324 |
+
EVA02_LARGE_MODEL_DSV3_REPO,
|
325 |
CONV_MODEL_DSV3_REPO,
|
326 |
VIT_MODEL_DSV3_REPO,
|
327 |
VIT_LARGE_MODEL_DSV3_REPO,
|
|
|
328 |
MOAT_MODEL_DSV2_REPO,
|
329 |
SWIN_MODEL_DSV2_REPO,
|
330 |
CONV_MODEL_DSV2_REPO,
|
|
|
340 |
gr.Markdown(value=DESCRIPTION)
|
341 |
with gr.Row():
|
342 |
with gr.Column(variant="panel"):
|
343 |
+
with gr.Row():
|
344 |
+
submit = gr.Button(value="Submit", variant="primary", size="lg")
|
345 |
+
with gr.Row():
|
346 |
+
gallery = gr.Gallery(columns=5, rows=5, show_share_button=False, interactive=True, height="500px", label="Input")
|
347 |
+
with gr.Row():
|
348 |
+
upload_button = gr.UploadButton("Upload Images", file_types=["image"], file_count="multiple", size="sm")
|
349 |
+
remove_button = gr.Button("Remove Selected Image", size="sm")
|
350 |
+
|
351 |
model_repo = gr.Dropdown(
|
352 |
dropdown_list,
|
353 |
value=SWINV2_MODEL_DSV3_REPO,
|
|
|
381 |
label="Use MCut threshold",
|
382 |
scale=1,
|
383 |
)
|
384 |
+
with gr.Row():
|
385 |
+
characters_merge_enabled = gr.Checkbox(
|
386 |
+
value=True,
|
387 |
+
label="Merge characters into the string output",
|
388 |
+
scale=1,
|
389 |
+
)
|
390 |
+
with gr.Row():
|
391 |
+
additional_tags_prepend = gr.Text(label="Prepend Additional tags (comma split)")
|
392 |
+
additional_tags_append = gr.Text(label="Append Additional tags (comma split)")
|
393 |
with gr.Row():
|
394 |
clear = gr.ClearButton(
|
395 |
components=[
|
396 |
+
gallery,
|
397 |
model_repo,
|
398 |
general_thresh,
|
399 |
general_mcut_enabled,
|
400 |
character_thresh,
|
401 |
character_mcut_enabled,
|
402 |
+
characters_merge_enabled,
|
403 |
+
additional_tags_prepend,
|
404 |
+
additional_tags_append,
|
405 |
],
|
406 |
variant="secondary",
|
407 |
size="lg",
|
408 |
)
|
|
|
409 |
with gr.Column(variant="panel"):
|
410 |
+
download_file = gr.File(label="Output (Download)")
|
411 |
+
sorted_general_strings = gr.Textbox(label="Output (string)", show_label=True, show_copy_button=True)
|
412 |
rating = gr.Label(label="Rating")
|
413 |
character_res = gr.Label(label="Output (characters)")
|
414 |
general_res = gr.Label(label="Output (tags)")
|
415 |
clear.add(
|
416 |
[
|
417 |
+
download_file,
|
418 |
sorted_general_strings,
|
419 |
rating,
|
420 |
character_res,
|
|
|
422 |
]
|
423 |
)
|
424 |
|
425 |
+
# When the upload button is clicked, add the new images to the gallery
|
426 |
+
upload_button.upload(add_images_to_gallery, inputs=[gallery, upload_button], outputs=gallery)
|
427 |
+
# Event to update the selected image when an image is clicked in the gallery
|
428 |
+
selected_image = gr.Textbox(label="Selected Image", visible=False)
|
429 |
+
gallery.select(get_selection_from_gallery, inputs=gallery, outputs=[selected_image, sorted_general_strings, rating, character_res, general_res])
|
430 |
+
# Event to remove a selected image from the gallery
|
431 |
+
remove_button.click(remove_image_from_gallery, inputs=[gallery, selected_image], outputs=gallery)
|
432 |
+
|
433 |
submit.click(
|
434 |
predictor.predict,
|
435 |
inputs=[
|
436 |
+
gallery,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
model_repo,
|
438 |
general_thresh,
|
439 |
general_mcut_enabled,
|
440 |
character_thresh,
|
441 |
character_mcut_enabled,
|
442 |
+
characters_merge_enabled,
|
443 |
+
additional_tags_prepend,
|
444 |
+
additional_tags_append,
|
445 |
],
|
446 |
+
outputs=[download_file, sorted_general_strings, rating, character_res, general_res],
|
447 |
)
|
448 |
+
|
449 |
+
# gr.Examples(
|
450 |
+
# [["power.jpg", SWINV2_MODEL_DSV3_REPO, 0.35, False, 0.85, False]],
|
451 |
+
# inputs=[
|
452 |
+
# gallery,
|
453 |
+
# model_repo,
|
454 |
+
# general_thresh,
|
455 |
+
# general_mcut_enabled,
|
456 |
+
# character_thresh,
|
457 |
+
# character_mcut_enabled,
|
458 |
+
# characters_merge_enabled,
|
459 |
+
# additional_tags_prepend,
|
460 |
+
# additional_tags_append,
|
461 |
+
# ],
|
462 |
+
# )
|
463 |
|
464 |
demo.queue(max_size=10)
|
465 |
+
demo.launch(inbrowser=True)
|
466 |
|
467 |
|
468 |
if __name__ == "__main__":
|
@@ -2,5 +2,5 @@ pillow>=9.0.0
|
|
2 |
onnxruntime>=1.12.0
|
3 |
huggingface-hub
|
4 |
|
5 |
-
gradio==5.
|
6 |
pandas
|
|
|
2 |
onnxruntime>=1.12.0
|
3 |
huggingface-hub
|
4 |
|
5 |
+
gradio==5.6.0
|
6 |
pandas
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@echo off
|
2 |
+
|
3 |
+
:: The source of the webui.bat file is stable-diffusion-webui
|
4 |
+
:: set COMMANDLINE_ARGS=--whisper_implementation faster-whisper --input_audio_max_duration -1 --default_model_name large-v2 --auto_parallel True --output_dir output --vad_max_merge_size 90 --save_downloaded_files --autolaunch
|
5 |
+
|
6 |
+
if not defined PYTHON (set PYTHON=python)
|
7 |
+
if not defined VENV_DIR (set "VENV_DIR=%~dp0%venv")
|
8 |
+
|
9 |
+
mkdir tmp 2>NUL
|
10 |
+
|
11 |
+
%PYTHON% -c "" >tmp/stdout.txt 2>tmp/stderr.txt
|
12 |
+
if %ERRORLEVEL% == 0 goto :check_pip
|
13 |
+
echo Couldn't launch python
|
14 |
+
goto :show_stdout_stderr
|
15 |
+
|
16 |
+
:check_pip
|
17 |
+
%PYTHON% -mpip --help >tmp/stdout.txt 2>tmp/stderr.txt
|
18 |
+
if %ERRORLEVEL% == 0 goto :start_venv
|
19 |
+
if "%PIP_INSTALLER_LOCATION%" == "" goto :show_stdout_stderr
|
20 |
+
%PYTHON% "%PIP_INSTALLER_LOCATION%" >tmp/stdout.txt 2>tmp/stderr.txt
|
21 |
+
if %ERRORLEVEL% == 0 goto :start_venv
|
22 |
+
echo Couldn't install pip
|
23 |
+
goto :show_stdout_stderr
|
24 |
+
|
25 |
+
:start_venv
|
26 |
+
if ["%VENV_DIR%"] == ["-"] goto :skip_venv
|
27 |
+
if ["%SKIP_VENV%"] == ["1"] goto :skip_venv
|
28 |
+
|
29 |
+
dir "%VENV_DIR%\Scripts\Python.exe" >tmp/stdout.txt 2>tmp/stderr.txt
|
30 |
+
if %ERRORLEVEL% == 0 goto :activate_venv
|
31 |
+
|
32 |
+
for /f "delims=" %%i in ('CALL %PYTHON% -c "import sys; print(sys.executable)"') do set PYTHON_FULLNAME="%%i"
|
33 |
+
echo Creating venv in directory %VENV_DIR% using python %PYTHON_FULLNAME%
|
34 |
+
%PYTHON_FULLNAME% -m venv "%VENV_DIR%" >tmp/stdout.txt 2>tmp/stderr.txt
|
35 |
+
if %ERRORLEVEL% == 0 goto :activate_venv
|
36 |
+
echo Unable to create venv in directory "%VENV_DIR%"
|
37 |
+
goto :show_stdout_stderr
|
38 |
+
|
39 |
+
:activate_venv
|
40 |
+
set PYTHON="%VENV_DIR%\Scripts\Python.exe"
|
41 |
+
echo venv %PYTHON%
|
42 |
+
|
43 |
+
:skip_venv
|
44 |
+
goto :launch
|
45 |
+
|
46 |
+
:launch
|
47 |
+
%PYTHON% app.py %COMMANDLINE_ARGS% %*
|
48 |
+
pause
|
49 |
+
exit /b
|
50 |
+
|
51 |
+
:show_stdout_stderr
|
52 |
+
|
53 |
+
echo.
|
54 |
+
echo exit code: %errorlevel%
|
55 |
+
|
56 |
+
for /f %%i in ("tmp\stdout.txt") do set size=%%~zi
|
57 |
+
if %size% equ 0 goto :show_stderr
|
58 |
+
echo.
|
59 |
+
echo stdout:
|
60 |
+
type tmp\stdout.txt
|
61 |
+
|
62 |
+
:show_stderr
|
63 |
+
for /f %%i in ("tmp\stderr.txt") do set size=%%~zi
|
64 |
+
if %size% equ 0 goto :show_stderr
|
65 |
+
echo.
|
66 |
+
echo stderr:
|
67 |
+
type tmp\stderr.txt
|
68 |
+
|
69 |
+
:endofscript
|
70 |
+
|
71 |
+
echo.
|
72 |
+
echo Launch unsuccessful. Exiting.
|
73 |
+
pause
|