File size: 15,628 Bytes
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92bc446
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4abae29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b6dda4
b6ac700
 
 
 
 
 
 
 
9b6dda4
b0efdc6
b6ac700
 
 
 
 
b0efdc6
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8077be2
b6ac700
 
 
 
 
4abae29
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4abae29
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4abae29
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
4abae29
 
 
 
 
 
 
 
 
 
 
b6ac700
 
 
 
 
 
 
 
4abae29
 
 
 
 
 
 
 
 
 
 
 
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
4abae29
 
 
 
 
 
 
 
 
b6ac700
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import multiprocessing
from queue import Empty
import threading
import time
from src.hooks.progressListener import ProgressListener
from src.vad import AbstractTranscription, TranscriptionConfig, get_audio_duration

from multiprocessing import Pool, Queue

from typing import Any, Dict, List, Union
import os

from src.whisper.abstractWhisperContainer import AbstractWhisperCallback

class _ProgressListenerToQueue(ProgressListener):
    def __init__(self, progress_queue: Queue):
        self.progress_queue = progress_queue
        self.progress_total = 0
        self.prev_progress = 0

    def on_progress(self, current: Union[int, float], total: Union[int, float], desc: str = None):
        delta = current - self.prev_progress
        self.prev_progress = current
        self.progress_total = total
        self.progress_queue.put(delta)

    def on_finished(self):
        if self.progress_total > self.prev_progress:
            delta = self.progress_total - self.prev_progress
            self.progress_queue.put(delta)
            self.prev_progress = self.progress_total

class ParallelContext:
    def __init__(self, num_processes: int = None, auto_cleanup_timeout_seconds: float = None):
        self.num_processes = num_processes
        self.auto_cleanup_timeout_seconds = auto_cleanup_timeout_seconds
        self.lock = threading.Lock()

        self.ref_count = 0
        self.pool = None
        self.cleanup_timer = None

    def get_pool(self):
        # Initialize pool lazily
        if (self.pool is None):
            context = multiprocessing.get_context('spawn')
            self.pool = context.Pool(self.num_processes)

        self.ref_count = self.ref_count + 1

        if (self.auto_cleanup_timeout_seconds is not None):
            self._stop_auto_cleanup()

        return self.pool

    def return_pool(self, pool):
        if (self.pool == pool and self.ref_count > 0):
            self.ref_count = self.ref_count - 1

            if (self.ref_count == 0):
                if (self.auto_cleanup_timeout_seconds is not None):
                    self._start_auto_cleanup()

    def _start_auto_cleanup(self):
        if (self.cleanup_timer is not None):
            self.cleanup_timer.cancel()
        self.cleanup_timer = threading.Timer(self.auto_cleanup_timeout_seconds, self._execute_cleanup)
        self.cleanup_timer.start()

        print("Started auto cleanup of pool in " + str(self.auto_cleanup_timeout_seconds) + " seconds")

    def _stop_auto_cleanup(self):
        if (self.cleanup_timer is not None):
            self.cleanup_timer.cancel()
            self.cleanup_timer = None

            print("Stopped auto cleanup of pool")

    def _execute_cleanup(self):
        print("Executing cleanup of pool")

        if (self.ref_count == 0):
            self.close()

    def close(self):
        self._stop_auto_cleanup()

        if (self.pool is not None):
            print("Closing pool of " + str(self.num_processes) + " processes")
            self.pool.close()
            self.pool.join()
        self.pool = None

class ParallelTranscriptionConfig(TranscriptionConfig):
    def __init__(self, device_id: str, override_timestamps, initial_segment_index, copy: TranscriptionConfig = None):
        super().__init__(copy.non_speech_strategy, copy.segment_padding_left, copy.segment_padding_right, copy.max_silent_period, copy.max_merge_size, copy.max_prompt_window, initial_segment_index)
        self.device_id = device_id
        self.override_timestamps = override_timestamps

class ParallelTranscription(AbstractTranscription):
    # Silero VAD typically takes about 3 seconds per minute, so there's no need to split the chunks 
    # into smaller segments than 2 minute (min 6 seconds per CPU core)
    MIN_CPU_CHUNK_SIZE_SECONDS = 2 * 60

    def __init__(self, sampling_rate: int = 16000):
        super().__init__(sampling_rate=sampling_rate)

    def transcribe_parallel(self, transcription: AbstractTranscription, audio: str, whisperCallable: AbstractWhisperCallback, config: TranscriptionConfig, 
                            cpu_device_count: int, gpu_devices: List[str], cpu_parallel_context: ParallelContext = None, gpu_parallel_context: ParallelContext = None, 
                            progress_listener: ProgressListener = None):

        """
        Perform parallel transcription of an audio file using CPU and GPU.
        
        Args:
            transcription (AbstractTranscription): The transcription instance handling processing.
            audio (str): Path to the audio file to be transcribed.
            whisperCallable (AbstractWhisperCallback): Callback to interact with the Whisper model.
            config (TranscriptionConfig): Configuration for transcription settings.
            cpu_device_count (int): Number of CPU devices to use for processing.
            gpu_devices (List[str]): List of GPU device IDs to use for processing.
            cpu_parallel_context (ParallelContext, optional): Context for managing CPU parallel execution.
            gpu_parallel_context (ParallelContext, optional): Context for managing GPU parallel execution.
            progress_listener (ProgressListener, optional): Listener for tracking transcription progress.
        
        Returns:
            dict: Merged transcription results containing text, segments, and detected language.
        """
        total_duration = get_audio_duration(audio)

        # First, get the timestamps for the original audio
        if (cpu_device_count > 1 and not transcription.is_transcribe_timestamps_fast()):
            merged = self._get_merged_timestamps_parallel(transcription, audio, config, total_duration, cpu_device_count, cpu_parallel_context)
        else:
            timestamp_segments = transcription.get_transcribe_timestamps(audio, config, 0, total_duration)
            merged = transcription.get_merged_timestamps(timestamp_segments, config, total_duration)

        # We must make sure the whisper model is downloaded
        if (len(gpu_devices) > 1):
            whisperCallable.model_container.ensure_downloaded()

        # Split into a list for each device
        # TODO: Split by time instead of by number of chunks
        merged_split = list(self._split(merged, len(gpu_devices)))

        # Parameters that will be passed to the transcribe function
        parameters = []
        segment_index = config.initial_segment_index

        processing_manager = multiprocessing.Manager()
        progress_queue = processing_manager.Queue()

        for i in range(len(gpu_devices)):
            # Note that device_segment_list can be empty. But we will still create a process for it,
            # as otherwise we run the risk of assigning the same device to multiple processes.
            device_segment_list = list(merged_split[i]) if i < len(merged_split) else []
            device_id = gpu_devices[i]

            print("Device " + str(device_id) + " (index " + str(i) + ") has " + str(len(device_segment_list)) + " segments")

            # Create a new config with the given device ID
            device_config = ParallelTranscriptionConfig(device_id, device_segment_list, segment_index, config)
            segment_index += len(device_segment_list)

            progress_listener_to_queue = _ProgressListenerToQueue(progress_queue)
            parameters.append([audio, whisperCallable, device_config, progress_listener_to_queue]);

        merged = {
            'text': '',
            'segments': [],
            'language': None
        }

        created_context = False

        perf_start_gpu = time.perf_counter()

        # Spawn a separate process for each device
        try:
            if (gpu_parallel_context is None):
                gpu_parallel_context = ParallelContext(len(gpu_devices))
                created_context = True

            # Get a pool of processes
            pool = gpu_parallel_context.get_pool()

            # Run the transcription in parallel
            results_async = pool.starmap_async(self.transcribe, parameters)
            total_progress = 0

            idx=0
            while not results_async.ready():
                try:
                    delta = progress_queue.get(timeout=5)  # Set a timeout of 5 seconds
                except Empty:
                    continue
                
                total_progress += delta
                if progress_listener is not None:
                    idx+=1
                    progress_listener.on_progress(total_progress, total_duration, desc=f"Transcribe parallel: {idx}, {total_progress:.2f}/{total_duration:.2f}")

            results = results_async.get()

            # Call the finished callback
            if progress_listener is not None:
                progress_listener.on_finished(desc=f"Transcribe parallel: {idx}, {total_progress:.2f}/{total_duration:.2f}.")

            for result in results:
                # Merge the results
                if (result['text'] is not None):
                    merged['text'] += result['text']
                if (result['segments'] is not None):
                    merged['segments'].extend(result['segments'])
                if (result['language'] is not None):
                    merged['language'] = result['language']

        finally:
            # Return the pool to the context
            if (gpu_parallel_context is not None):
                gpu_parallel_context.return_pool(pool)
            # Always close the context if we created it
            if (created_context):
                gpu_parallel_context.close()

        perf_end_gpu = time.perf_counter()
        print("\nParallel transcription took " + str(perf_end_gpu - perf_start_gpu) + " seconds")

        return merged

    def _get_merged_timestamps_parallel(self, transcription: AbstractTranscription, audio: str, config: TranscriptionConfig, total_duration: float, 
                                       cpu_device_count: int, cpu_parallel_context: ParallelContext = None):
        """
        Compute merged timestamps for transcription in parallel using CPU.
        
        Args:
            transcription (AbstractTranscription): The transcription instance handling timestamp processing.
            audio (str): Path to the audio file.
            config (TranscriptionConfig): Configuration settings for timestamp processing.
            total_duration (float): Total duration of the audio file in seconds.
            cpu_device_count (int): Number of CPU devices to use.
            cpu_parallel_context (ParallelContext, optional): Context for managing CPU parallel execution.
        
        Returns:
            list: Merged timestamps after processing.
        """
        parameters = []

        chunk_size = max(total_duration / cpu_device_count, self.MIN_CPU_CHUNK_SIZE_SECONDS)
        chunk_start = 0
        cpu_device_id = 0

        perf_start_time = time.perf_counter()

        # Create chunks that will be processed on the CPU
        while (chunk_start < total_duration):
            chunk_end = min(chunk_start + chunk_size, total_duration)

            if (chunk_end - chunk_start < 1):
                # No need to process chunks that are less than 1 second
                break

            print(f"Parallel VAD: Executing chunk from {chunk_start} to {chunk_end} on CPU device {cpu_device_id}")
            parameters.append([audio, config, chunk_start, chunk_end]);

            cpu_device_id += 1
            chunk_start = chunk_end

        created_context = False

        # Spawn a separate process for each device
        try:
            if (cpu_parallel_context is None):
                cpu_parallel_context = ParallelContext(cpu_device_count)
                created_context = True

            # Get a pool of processes
            pool = cpu_parallel_context.get_pool()

            # Run the transcription in parallel. Note that transcription must be picklable.
            results = pool.starmap(transcription.get_transcribe_timestamps, parameters)

            timestamps = []

            # Flatten the results
            for result in results:
                timestamps.extend(result)

            merged = transcription.get_merged_timestamps(timestamps, config, total_duration)

            perf_end_time = time.perf_counter()
            print(f"Parallel VAD processing took {perf_end_time - perf_start_time} seconds")
            return merged

        finally:
            # Return the pool to the context
            if (cpu_parallel_context is not None):
                cpu_parallel_context.return_pool(pool)
            # Always close the context if we created it
            if (created_context):
                cpu_parallel_context.close()

    def get_transcribe_timestamps(self, audio: str, config: ParallelTranscriptionConfig, start_time: float, duration: float):
        return []

    def get_merged_timestamps(self,  timestamps: List[Dict[str, Any]], config: ParallelTranscriptionConfig, total_duration: float):
        """
        Merge timestamps from different transcription segments.
        
        Args:
            timestamps (List[Dict[str, Any]]): List of timestamp dictionaries from different segments.
            config (ParallelTranscriptionConfig): Configuration settings for merging timestamps.
            total_duration (float): Total duration of the audio file in seconds.
        
        Returns:
            list: Merged timestamps after processing.
        """
        # Override timestamps that will be processed
        if (config.override_timestamps is not None):
            print("(get_merged_timestamps) Using override timestamps of size " + str(len(config.override_timestamps)))
            return config.override_timestamps
        return super().get_merged_timestamps(timestamps, config, total_duration)

    def transcribe(self, audio: str, whisperCallable: AbstractWhisperCallback, config: ParallelTranscriptionConfig, 
                   progressListener: ProgressListener = None):
        """
        Perform transcription on a given audio file using the specified device.
        
        Args:
            audio (str): Path to the audio file to be transcribed.
            whisperCallable (AbstractWhisperCallback): Callback to interact with the Whisper model.
            config (ParallelTranscriptionConfig): Configuration settings for transcription.
            progressListener (ProgressListener, optional): Listener for tracking transcription progress.
        
        Returns:
            dict: Transcription results including text, segments, and detected language.
        """
        # Override device ID the first time
        if (os.environ.get("INITIALIZED", None) is None):
            os.environ["INITIALIZED"] = "1"

            # Note that this may be None if the user didn't specify a device. In that case, Whisper will
            # just use the default GPU device.
            if (config.device_id is not None):
                print("Using device " + config.device_id)
                os.environ["CUDA_VISIBLE_DEVICES"] = config.device_id
        
        return super().transcribe(audio, whisperCallable, config, progressListener)

    def _split(self, a, n):
        """Split a list into n approximately equal parts.
        
        Args:
            a (List[Any]): The list to be split.
            n (int): The number of parts to split the list into.
        
        Returns:
            generator: A generator yielding n sublists.
        """
        k, m = divmod(len(a), n)
        return (a[i*k+min(i, m):(i+1)*k+min(i+1, m)] for i in range(n))