|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
|
|
|
|
|
|
model_id = "deepseek-ai/deepseek-coder-1.3b-instruct" |
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 |
|
) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
def generate_code(prompt): |
|
if not prompt.strip(): |
|
return "⚠ Please enter a valid prompt." |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=200, |
|
temperature=0.7 |
|
) |
|
|
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
demo = gr.Interface( |
|
fn=generate_code, |
|
inputs=gr.Textbox(lines=5, label="Enter Prompt"), |
|
outputs=gr.Textbox(label="Generated Output"), |
|
title="Code Generator using DeepSeek" |
|
) |
|
|
|
demo.launch() |
|
|