Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model and tokenizer from Hugging Face Hub
|
6 |
+
model_id = "deepseek-ai/deepseek-coder-1.3b-base"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
|
9 |
+
|
10 |
+
def generate_code(prompt):
|
11 |
+
if not prompt.strip():
|
12 |
+
return "⚠ Please enter a valid prompt."
|
13 |
+
|
14 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
15 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
16 |
+
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model.generate(**inputs, max_new_tokens=200, temperature=0.7)
|
19 |
+
|
20 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
|
22 |
+
# Launch Gradio UI
|
23 |
+
demo = gr.Interface(fn=generate_code,
|
24 |
+
inputs=gr.Textbox(lines=5, label="Enter Prompt"),
|
25 |
+
outputs="text",
|
26 |
+
title="Code Generator using DeepSeek")
|
27 |
+
|
28 |
+
demo.launch()
|