import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load model and tokenizer from Hugging Face Hub model_id = "deepseek-ai/deepseek-coder-1.3b-base" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32) def generate_code(prompt): if not prompt.strip(): return "⚠ Please enter a valid prompt." inputs = tokenizer(prompt, return_tensors="pt") inputs = {k: v.to(model.device) for k, v in inputs.items()} with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=200, temperature=0.7) return tokenizer.decode(outputs[0], skip_special_tokens=True) demo = gr.Interface(fn=generate_code, inputs=gr.Textbox(lines=5, label="Enter Prompt"), outputs="text", title="Code Generator using DeepSeek") demo.launch()