Spaces:
Build error
Build error
File size: 1,262 Bytes
03ddc3f 3597c88 03ddc3f 3597c88 03ddc3f 3597c88 03ddc3f 3597c88 03ddc3f 87f602f 03ddc3f 87f602f 03ddc3f 3597c88 03ddc3f 3597c88 03ddc3f 3597c88 03ddc3f 3597c88 03ddc3f 3597c88 5777262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import spaces
import torch
import gradio as gr
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
@spaces.GPU
def audio_transcribe(inputs, task):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return text
with gr.Blocks() as transcriberUI:
gr.Markdown(
"""
# Ola!
Clicar no botao abaixo para selecionar o Audio a ser transcrito!
Ambiente Demo disponivel 24x7. Running on ZeroGPU with openai/whisper-large-v3
""")
inp = gr.File(label="Arquivo de Audio", show_label=True, type="file_path", file_count="single", file_types=["mp3"])
transcribe = gr.Textbox(label="Transcricao", show_label=True, show_copy_button=True)
inp.upload(audio_transcribe, inp, transcribe)
if __name__ == "__main__":
transcriberUI.launch()
|