File size: 2,588 Bytes
5ad5566
03ddc3f
 
3597c88
03ddc3f
 
3597c88
03ddc3f
 
 
3597c88
03ddc3f
3597c88
03ddc3f
 
 
 
 
 
87f602f
03ddc3f
 
 
 
87f602f
03ddc3f
0d16ed8
 
 
03ddc3f
3597c88
5ad5566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3597c88
 
0d16ed8
 
 
 
 
 
a3ea009
3597c88
5ad5566
 
0d16ed8
 
 
 
 
 
 
 
 
 
03ddc3f
5ad5566
 
3597c88
a3ea009
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import spaces
import torch
import gradio as gr
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)

@spaces.GPU
def audio_transcribe(inputs, task):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
    transcriberUI.ask_question.visible = True
    transcriberUI.submit_question.visible = True

    return  text

@spaces.GPU
def respond_to_question(transcript, question):
    # Optionally, use OpenAI API to generate a response to the user's question
    # based on the transcript
    response = ""
    # Replace this with your OpenAI API key
    openai.api_key = os.environ["OPENAI_API_KEY"]
    response = openai.Completion.create(
        engine="text-davinci-002",
        prompt=f"Transcript: {transcript}\n\nUser: {question}\n\nAI:",
        temperature=0.7,
        max_tokens=60,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0
    ).choices[0].text
    return response
    
with gr.Blocks() as transcriberUI:
    gr.Markdown(
        """
        # Ola!
        Clicar no botao abaixo para selecionar o Audio a ser transcrito!
        Ambiente Demo disponivel 24x7. Running on ZeroGPU with openai/whisper-large-v3
        """
    )
    inp = gr.File(label="Arquivo de Audio", show_label=True, type="filepath", file_count="single", file_types=["mp3"])
    transcribe = gr.Textbox(label="Transcricao", show_label=True, show_copy_button=True)
    ask_question = gr.Textbox(label="Ask a question", visible=False)
    response_output = gr.Textbox(label="Response", visible=False)
    submit_question = gr.Button("Submit question", visible=False)

    def ask_question_callback():
        if ask_question.value:
            response = respond_to_question(transcript_output.value, ask_question.value)
            response_output.visible = True
            response_output.value = response
        else:
            response_output.value = "No question asked"

    inp.upload(audio_transcribe, inp, transcribe)
    submit_question.click(ask_question_callback, outputs=[response_output], inputs=[transcribe, ask_question])


transcriberUI.queue().launch()