Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import spaces | |
import torch | |
import gradio as gr | |
from openai import OpenAI | |
from transformers import pipeline | |
MODEL_NAME = "openai/whisper-large-v3" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000 | |
client = OpenAI(api_key=os.environ["OPENAI_API_KEY"]) | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
def respond_to_question(transcript, question): | |
# Optionally, use OpenAI API to generate a response to the user's question | |
# based on the transcript | |
response = "" | |
# Replace this with your OpenAI API key | |
response = client.completions.create( | |
engine="gpt-4o-mini", | |
prompt=f"Transcript: {transcript}\n\nUser: {question}\n\nAI:", | |
temperature=0.3, | |
max_tokens=60, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0 | |
).choices[0].text | |
return response | |
def respond_to_question_llama(transcript, question): | |
from huggingface_hub import InferenceClient | |
client = InferenceClient( | |
"meta-llama/Meta-Llama-3.1-8B-Instruct", | |
token=os.environ["HUGGINGFACEHUB_API_TOKEN"], | |
) | |
response = client.chat_completion( | |
messages=[{"role": "user", "content": f"Transcript: {transcript}\n\nUser: {question}"}], | |
max_tokens=500, | |
).choices[0].content | |
return response | |
def audio_transcribe(inputs): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
text = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps=True)["text"] | |
return text | |
with gr.Blocks() as transcriberUI: | |
gr.Markdown( | |
""" | |
# Ola! | |
Clique no botao abaixo para selecionar o Audio que deseja conversar! | |
Ambiente disponivel 24x7. Running on ZeroGPU with openai/whisper-large-v3 | |
""" | |
) | |
inp = gr.File(label="Arquivo de Audio", show_label=True, type="filepath", file_count="single", file_types=["mp3"]) | |
transcribe = gr.Textbox(label="Transcricao", show_label=True, show_copy_button=True) | |
ask_question = gr.Textbox(label="Ask a question", visible=True) | |
response_output = gr.Textbox(label="Response", visible=True) | |
submit_question = gr.Button("Submit question", visible=True) | |
def ask_question_callback(transcription,question): | |
if ask_question: | |
response = respond_to_question_llama(transcription, question) | |
response_output.value = response | |
else: | |
response_output.value = "No question asked" | |
return response_output | |
inp.upload(audio_transcribe, inputs=inp, outputs=transcribe) | |
submit_question.click(ask_question_callback, outputs=[response_output], inputs=[transcribe, ask_question]) | |
transcriberUI.queue().launch(debug=True) |