Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -18,12 +18,39 @@ pipe = pipeline(
|
|
18 |
device=device,
|
19 |
)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
with gr.Blocks() as transcriberUI:
|
22 |
gr.Markdown(
|
23 |
"""
|
24 |
# Ola!
|
25 |
-
|
26 |
-
Ambiente
|
27 |
"""
|
28 |
)
|
29 |
inp = gr.File(label="Arquivo de Audio", show_label=True, type="filepath", file_count="single", file_types=["mp3"])
|
@@ -32,33 +59,6 @@ with gr.Blocks() as transcriberUI:
|
|
32 |
response_output = gr.Textbox(label="Response", visible=True)
|
33 |
submit_question = gr.Button("Submit question", visible=True)
|
34 |
|
35 |
-
@spaces.GPU
|
36 |
-
def respond_to_question(transcript, question):
|
37 |
-
# Optionally, use OpenAI API to generate a response to the user's question
|
38 |
-
# based on the transcript
|
39 |
-
response = ""
|
40 |
-
# Replace this with your OpenAI API key
|
41 |
-
openai.api_key = os.environ["OPENAI_API_KEY"]
|
42 |
-
response = openai.Completion.create(
|
43 |
-
engine="gpt-4o-mini",
|
44 |
-
prompt=f"Transcript: {transcript}\n\nUser: {question}\n\nAI:",
|
45 |
-
temperature=0.3,
|
46 |
-
max_tokens=60,
|
47 |
-
top_p=1,
|
48 |
-
frequency_penalty=0,
|
49 |
-
presence_penalty=0
|
50 |
-
).choices[0].text
|
51 |
-
return response
|
52 |
-
|
53 |
-
@spaces.GPU
|
54 |
-
def audio_transcribe(inputs):
|
55 |
-
if inputs is None:
|
56 |
-
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
57 |
-
|
58 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps=True)["text"]
|
59 |
-
|
60 |
-
return text
|
61 |
-
|
62 |
def ask_question_callback(transcription,question):
|
63 |
if ask_question:
|
64 |
response = respond_to_question(transcription, question)
|
|
|
18 |
device=device,
|
19 |
)
|
20 |
|
21 |
+
@spaces.GPU
|
22 |
+
def respond_to_question(transcript, question):
|
23 |
+
# Optionally, use OpenAI API to generate a response to the user's question
|
24 |
+
# based on the transcript
|
25 |
+
response = ""
|
26 |
+
# Replace this with your OpenAI API key
|
27 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
28 |
+
response = openai.Completion.create(
|
29 |
+
engine="gpt-4o-mini",
|
30 |
+
prompt=f"Transcript: {transcript}\n\nUser: {question}\n\nAI:",
|
31 |
+
temperature=0.3,
|
32 |
+
max_tokens=60,
|
33 |
+
top_p=1,
|
34 |
+
frequency_penalty=0,
|
35 |
+
presence_penalty=0
|
36 |
+
).choices[0].text
|
37 |
+
return response
|
38 |
+
|
39 |
+
@spaces.GPU
|
40 |
+
def audio_transcribe(inputs):
|
41 |
+
if inputs is None:
|
42 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
43 |
+
|
44 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps=True)["text"]
|
45 |
+
|
46 |
+
return text
|
47 |
+
|
48 |
with gr.Blocks() as transcriberUI:
|
49 |
gr.Markdown(
|
50 |
"""
|
51 |
# Ola!
|
52 |
+
Clique no botao abaixo para selecionar o Audio que deseja conversar!
|
53 |
+
Ambiente disponivel 24x7. Running on ZeroGPU with openai/whisper-large-v3
|
54 |
"""
|
55 |
)
|
56 |
inp = gr.File(label="Arquivo de Audio", show_label=True, type="filepath", file_count="single", file_types=["mp3"])
|
|
|
59 |
response_output = gr.Textbox(label="Response", visible=True)
|
60 |
submit_question = gr.Button("Submit question", visible=True)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
def ask_question_callback(transcription,question):
|
63 |
if ask_question:
|
64 |
response = respond_to_question(transcription, question)
|